IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v112y2013icp67-74.html
   My bibliography  Save this article

Calcium-based sorbent doped with attapulgite for CO2 capture

Author

Listed:
  • Chen, Huichao
  • Zhao, Changsui
  • Yu, Weiwei

Abstract

Attempt to enhance CO2 uptake of calcium based sorbents by doping limestone with attapulgite was made and successfully achieved its effectiveness. The appropriate doping mode and optimal ratio were identified. The cyclic carbonation behavior was conducted under conditions of different carbonation temperature, calcination temperature, CO2 partial pressure in carbonation and calcination atmosphere. Microstructure and compositions of sorbents were analyzed to serve as a supplement to the studies. Results show that the optimal doping ratio of attapulgite to calcined limestone was 15wt.% in the process of hydration. The doped sorbent displayed much better CO2 capture performance than the natural limestone by 128% increase after 20 cycles under the same condition (calcination at 950°C in 100% CO2 and carbonation at 700°C in 15% CO2/85%N2). Excellent microstructure of the modified sorbent was created by doping attapulgite enabling higher CO2 capture capacity. Ca2SiO4, Al2O3 and Ca3Al10O18 distributed in the sorbent by XRD analysis enhanced its sintering-resistant leading to slow decrease in CO2 capture capacity during multiple cycles.

Suggested Citation

  • Chen, Huichao & Zhao, Changsui & Yu, Weiwei, 2013. "Calcium-based sorbent doped with attapulgite for CO2 capture," Applied Energy, Elsevier, vol. 112(C), pages 67-74.
  • Handle: RePEc:eee:appene:v:112:y:2013:i:c:p:67-74
    DOI: 10.1016/j.apenergy.2013.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913005096
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valverde, Jose M. & Sanchez-Jimenez, Pedro E. & Perejon, Antonio & Perez-Maqueda, Luis A., 2013. "Constant rate thermal analysis for enhancing the long-term CO2 capture of CaO at Ca-looping conditions," Applied Energy, Elsevier, vol. 108(C), pages 108-120.
    2. Aihara, Masahiko & Nagai, Toshiyuki & Matsushita, Junro & Negishi, Yoichi & Ohya, Haruhiko, 2001. "Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction," Applied Energy, Elsevier, vol. 69(3), pages 225-238, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Wenjing & Li, Yingjie & Xie, Xin & Sun, Rongyue, 2014. "Effect of the presence of HCl on cyclic CO2 capture of calcium-based sorbent in calcium looping process," Applied Energy, Elsevier, vol. 125(C), pages 246-253.
    2. Xie, Xin & Li, Yingjie & Wang, Wenjing & Shi, Lei, 2014. "HCl removal using cycled carbide slag from calcium looping cycles," Applied Energy, Elsevier, vol. 135(C), pages 391-401.
    3. Ma, Xiaotong & Li, Yingjie & Shi, Lei & He, Zirui & Wang, Zeyan, 2016. "Fabrication and CO2 capture performance of magnesia-stabilized carbide slag by by-product of biodiesel during calcium looping process," Applied Energy, Elsevier, vol. 168(C), pages 85-95.
    4. Huichao Chen & Fang Wang & Changsui Zhao & Lunbo Duan, 2018. "Carbonation kinetics of fly†ash†modified calcium†based sorbents for CO2 capture," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(2), pages 292-308, April.
    5. Jing, Jie-ying & Zhang, Xue-wei & Li, Qing & Li, Ting-yu & Li, Wen-ying, 2018. "Self-activation of CaO/Ca3Al2O6 sorbents by thermally pretreated in CO2 atmosphere," Applied Energy, Elsevier, vol. 220(C), pages 419-425.
    6. Erans, María & Manovic, Vasilije & Anthony, Edward J., 2016. "Calcium looping sorbents for CO2 capture," Applied Energy, Elsevier, vol. 180(C), pages 722-742.
    7. Li, Yingjie & Su, Mengying & Xie, Xin & Wu, Shuimu & Liu, Changtian, 2015. "CO2 capture performance of synthetic sorbent prepared from carbide slag and aluminum nitrate hydrate by combustion synthesis," Applied Energy, Elsevier, vol. 145(C), pages 60-68.
    8. Wang, Peng & Guo, Yafei & Zhao, Chuanwen & Yan, Junjie & Lu, Ping, 2017. "Biomass derived wood ash with amine modification for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 201(C), pages 34-44.
    9. Xiaotong Ma & Yingjie Li & Yi Qian & Zeyan Wang, 2019. "A Carbide Slag-Based, Ca 12 Al 14 O 33 -Stabilized Sorbent Prepared by the Hydrothermal Template Method Enabling Efficient CO 2 Capture," Energies, MDPI, vol. 12(13), pages 1-17, July.
    10. Witoon, Thongthai & Mungcharoen, Thumrongrut & Limtrakul, Jumras, 2014. "Biotemplated synthesis of highly stable calcium-based sorbents for CO2 capture via a precipitation method," Applied Energy, Elsevier, vol. 118(C), pages 32-40.
    11. Antzara, Andy & Heracleous, Eleni & Lemonidou, Angeliki A., 2015. "Improving the stability of synthetic CaO-based CO2 sorbents by structural promoters," Applied Energy, Elsevier, vol. 156(C), pages 331-343.
    12. Jing, Jie-ying & Li, Ting-yu & Zhang, Xue-wei & Wang, Shi-dong & Feng, Jie & Turmel, William A. & Li, Wen-ying, 2017. "Enhanced CO2 sorption performance of CaO/Ca3Al2O6 sorbents and its sintering-resistance mechanism," Applied Energy, Elsevier, vol. 199(C), pages 225-233.
    13. Shi, Jiewen & Li, Yingjie & Zhang, Qing & Ma, Xiaotong & Duan, Lunbo & Zhou, Xingang, 2017. "CO2 capture performance of a novel synthetic CaO/sepiolite sorbent at calcium looping conditions," Applied Energy, Elsevier, vol. 203(C), pages 412-421.
    14. Zhang, Wan & Li, Yingjie & He, Zirui & Ma, Xiaotong & Song, Haiping, 2017. "CO2 capture by carbide slag calcined under high-concentration steam and energy requirement in calcium looping conditions," Applied Energy, Elsevier, vol. 206(C), pages 869-878.
    15. Tao, Huayu & Qian, Xi & Zhou, Yi & Cheng, Hongfei, 2022. "Research progress of clay minerals in carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    16. Guo, Yafei & Zhao, Chuanwen & Chen, Xiaoping & Li, Changhai, 2015. "CO2 capture and sorbent regeneration performances of some wood ash materials," Applied Energy, Elsevier, vol. 137(C), pages 26-36.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, J. & Zhao, C.Y. & Pan, Z.H., 2017. "The effect of CO2 on Ca(OH)2 and Mg(OH)2 thermochemical heat storage systems," Energy, Elsevier, vol. 124(C), pages 114-123.
    2. Li, Yingjie & Su, Mengying & Xie, Xin & Wu, Shuimu & Liu, Changtian, 2015. "CO2 capture performance of synthetic sorbent prepared from carbide slag and aluminum nitrate hydrate by combustion synthesis," Applied Energy, Elsevier, vol. 145(C), pages 60-68.
    3. Xie, Xin & Li, Yingjie & Wang, Wenjing & Shi, Lei, 2014. "HCl removal using cycled carbide slag from calcium looping cycles," Applied Energy, Elsevier, vol. 135(C), pages 391-401.
    4. Hanak, Dawid P. & Jenkins, Barrie G. & Kruger, Tim & Manovic, Vasilije, 2017. "High-efficiency negative-carbon emission power generation from integrated solid-oxide fuel cell and calciner," Applied Energy, Elsevier, vol. 205(C), pages 1189-1201.
    5. Perejón, Antonio & Romeo, Luis M. & Lara, Yolanda & Lisbona, Pilar & Martínez, Ana & Valverde, Jose Manuel, 2016. "The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior," Applied Energy, Elsevier, vol. 162(C), pages 787-807.
    6. Gravogl, Georg & Knoll, Christian & Artner, Werner & Welch, Jan M. & Eitenberger, Elisabeth & Friedbacher, Gernot & Harasek, Michael & Hradil, Klaudia & Werner, Andreas & Weinberger, Peter & Müller, D, 2019. "Pressure effects on the carbonation of MeO (Me = Co, Mn, Pb, Zn) for thermochemical energy storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Valverde, J.M. & Raganati, F. & Quintanilla, M.A.S. & Ebri, J.M.P. & Ammendola, P. & Chirone, R., 2013. "Enhancement of CO2 capture at Ca-looping conditions by high-intensity acoustic fields," Applied Energy, Elsevier, vol. 111(C), pages 538-549.
    8. Zhang, Wan & Li, Yingjie & He, Zirui & Ma, Xiaotong & Song, Haiping, 2017. "CO2 capture by carbide slag calcined under high-concentration steam and energy requirement in calcium looping conditions," Applied Energy, Elsevier, vol. 206(C), pages 869-878.
    9. Sarah Roger-Lund & Jo Darkwa & Mark Worall & John Calautit & Rabah Boukhanouf, 2024. "A Review of Thermochemical Energy Storage Systems for District Heating in the UK," Energies, MDPI, vol. 17(14), pages 1-28, July.
    10. Valverde, J.M. & Sanchez-Jimenez, P.E. & Perez-Maqueda, L.A., 2014. "Calcium-looping for post-combustion CO2 capture. On the adverse effect of sorbent regeneration under CO2," Applied Energy, Elsevier, vol. 126(C), pages 161-171.
    11. Valverde, J.M. & Sanchez-Jimenez, P.E. & Perez-Maqueda, L.A. & Quintanilla, M.A.S. & Perez-Vaquero, J., 2014. "Role of crystal structure on CO2 capture by limestone derived CaO subjected to carbonation/recarbonation/calcination cycles at Ca-looping conditions," Applied Energy, Elsevier, vol. 125(C), pages 264-275.
    12. Zhao, Yunlei & Jin, Bo & Luo, Xiao & Liang, Zhiwu, 2021. "Thermodynamic evaluation and experimental investigation of CaO-assisted Fe-based chemical looping reforming process for syngas production," Applied Energy, Elsevier, vol. 288(C).
    13. Lee, Jaehee & Han, Sang-Jun & Wee, Jung-Ho, 2014. "Synthesis of dry sorbents for carbon dioxide capture using coal fly ash and its performance," Applied Energy, Elsevier, vol. 131(C), pages 40-47.
    14. Zhao, Y. & Zhao, C.Y. & Markides, C.N. & Wang, H. & Li, W., 2020. "Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: A technical review," Applied Energy, Elsevier, vol. 280(C).
    15. Ma, Xiaotong & Li, Yingjie & Shi, Lei & He, Zirui & Wang, Zeyan, 2016. "Fabrication and CO2 capture performance of magnesia-stabilized carbide slag by by-product of biodiesel during calcium looping process," Applied Energy, Elsevier, vol. 168(C), pages 85-95.
    16. Marias, Foivos & Neveu, Pierre & Tanguy, Gwennyn & Papillon, Philippe, 2014. "Thermodynamic analysis and experimental study of solid/gas reactor operating in open mode," Energy, Elsevier, vol. 66(C), pages 757-765.
    17. Lara, Yolanda & Lisbona, Pilar & Martínez, Ana & Romeo, Luis M., 2013. "Design and analysis of heat exchanger networks for integrated Ca-looping systems," Applied Energy, Elsevier, vol. 111(C), pages 690-700.
    18. Li, T.X. & Wang, R.Z. & Kiplagat, J.K. & Wang, L.W., 2009. "Performance study of a consolidated manganese chloride-expanded graphite compound for sorption deep-freezing processes," Applied Energy, Elsevier, vol. 86(7-8), pages 1201-1209, July.
    19. Li, Caili & Li, Yingjie & Fang, Yi & Zhang, Chunxiao & Ren, Yu, 2024. "TiO2/MnFe2O4 co-modified alkaline papermaking waste for CaO-CaCO3 thermochemical energy storage," Applied Energy, Elsevier, vol. 362(C).
    20. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Rood, Mark, 2017. "Thermal energy storage systems for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 82-100.

    More about this item

    Keywords

    Attapulgite; Carbonation; Calcium based sorbent; CO2 capture;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:112:y:2013:i:c:p:67-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.