IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v8y2018i2p292-308.html
   My bibliography  Save this article

Carbonation kinetics of fly†ash†modified calcium†based sorbents for CO2 capture

Author

Listed:
  • Huichao Chen
  • Fang Wang
  • Changsui Zhao
  • Lunbo Duan

Abstract

Calcium looping technology is one of the most promising technologies for CO2 capture. Nevertheless, one of the major problems for this technology is the rapid decay in CO2 capture performance of calcium†based sorbents during the calcination/carbonation cycles. It is essential to improve the sorbents’ CO2 capture capacity and maintain their long†term performance during the cycles, especially in a cost†effective and environmentally benign method for further development of the technology. Calcium†based sorbents modified with fly ash present great potential for enhancing CO2 capture capacity. Carbonation kinetics of the modified sorbents, an important factor for CO2 capture system design, is critical for exploring its application. The carbonation rate of the modified sorbents has been investigated and the main parameters such as activation energy and pre†exponential factor have been calculated. Logistic and Avrami fractional kinetics models show better fitting regression, as indicated with a high regression coefficient R2 of 0.987–0.999. The models well describe the CO2 carbonation kinetics behavior of the modified sorbents, since they have considered the multi†step reaction mechanisms including film diffusion, intra†particle diffusion, and the interaction with active sites, and have an acceptable average relative error between calculated and experimental data, for example 0.618–6.39% and 4.24–5.39% for the modified sorbents at chemical†controlled reaction and diffusion†controlled reaction, respectively. Activation energy and pre†exponential factor at chemical†controlled reaction are E1 = 15.019 kJ/mol, k01 = 5.940 mol/(m2s) and E2 = 12.252 kJ/mol, k02 = 3.195 mol/(m2s) for modified sorbents CaO/FA Hyd (50%AC) and CaO/PFA(cal)Hyd, respectively. © 2017 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Huichao Chen & Fang Wang & Changsui Zhao & Lunbo Duan, 2018. "Carbonation kinetics of fly†ash†modified calcium†based sorbents for CO2 capture," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(2), pages 292-308, April.
  • Handle: RePEc:wly:greenh:v:8:y:2018:i:2:p:292-308
    DOI: 10.1002/ghg.1739
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.1739
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.1739?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chen, Huichao & Zhao, Changsui & Yu, Weiwei, 2013. "Calcium-based sorbent doped with attapulgite for CO2 capture," Applied Energy, Elsevier, vol. 112(C), pages 67-74.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Puthiya Veetil, Sanoop Kumar & Rebane, Kaarel & Yörük, Can Rüstü & Lopp, Margus & Trikkel, Andres & Hitch, Michael, 2021. "Aqueous mineral carbonation of oil shale mine waste (limestone): A feasibility study to develop a CO2 capture sorbent," Energy, Elsevier, vol. 221(C).
    2. Peng Yang & Lunbo Duan & Hongjian Tang & Tianyi Cai & Zhao Sun, 2018. "Explaining steam‐enhanced carbonation of CaO based on first principles," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 1110-1123, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao, Huayu & Qian, Xi & Zhou, Yi & Cheng, Hongfei, 2022. "Research progress of clay minerals in carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    2. Zhang, Wan & Li, Yingjie & He, Zirui & Ma, Xiaotong & Song, Haiping, 2017. "CO2 capture by carbide slag calcined under high-concentration steam and energy requirement in calcium looping conditions," Applied Energy, Elsevier, vol. 206(C), pages 869-878.
    3. Li, Yingjie & Su, Mengying & Xie, Xin & Wu, Shuimu & Liu, Changtian, 2015. "CO2 capture performance of synthetic sorbent prepared from carbide slag and aluminum nitrate hydrate by combustion synthesis," Applied Energy, Elsevier, vol. 145(C), pages 60-68.
    4. Xiaotong Ma & Yingjie Li & Yi Qian & Zeyan Wang, 2019. "A Carbide Slag-Based, Ca 12 Al 14 O 33 -Stabilized Sorbent Prepared by the Hydrothermal Template Method Enabling Efficient CO 2 Capture," Energies, MDPI, vol. 12(13), pages 1-17, July.
    5. Jing, Jie-ying & Zhang, Xue-wei & Li, Qing & Li, Ting-yu & Li, Wen-ying, 2018. "Self-activation of CaO/Ca3Al2O6 sorbents by thermally pretreated in CO2 atmosphere," Applied Energy, Elsevier, vol. 220(C), pages 419-425.
    6. Xie, Xin & Li, Yingjie & Wang, Wenjing & Shi, Lei, 2014. "HCl removal using cycled carbide slag from calcium looping cycles," Applied Energy, Elsevier, vol. 135(C), pages 391-401.
    7. Erans, María & Manovic, Vasilije & Anthony, Edward J., 2016. "Calcium looping sorbents for CO2 capture," Applied Energy, Elsevier, vol. 180(C), pages 722-742.
    8. Witoon, Thongthai & Mungcharoen, Thumrongrut & Limtrakul, Jumras, 2014. "Biotemplated synthesis of highly stable calcium-based sorbents for CO2 capture via a precipitation method," Applied Energy, Elsevier, vol. 118(C), pages 32-40.
    9. Antzara, Andy & Heracleous, Eleni & Lemonidou, Angeliki A., 2015. "Improving the stability of synthetic CaO-based CO2 sorbents by structural promoters," Applied Energy, Elsevier, vol. 156(C), pages 331-343.
    10. Shi, Jiewen & Li, Yingjie & Zhang, Qing & Ma, Xiaotong & Duan, Lunbo & Zhou, Xingang, 2017. "CO2 capture performance of a novel synthetic CaO/sepiolite sorbent at calcium looping conditions," Applied Energy, Elsevier, vol. 203(C), pages 412-421.
    11. Guo, Yafei & Zhao, Chuanwen & Chen, Xiaoping & Li, Changhai, 2015. "CO2 capture and sorbent regeneration performances of some wood ash materials," Applied Energy, Elsevier, vol. 137(C), pages 26-36.
    12. Wang, Wenjing & Li, Yingjie & Xie, Xin & Sun, Rongyue, 2014. "Effect of the presence of HCl on cyclic CO2 capture of calcium-based sorbent in calcium looping process," Applied Energy, Elsevier, vol. 125(C), pages 246-253.
    13. Ma, Xiaotong & Li, Yingjie & Shi, Lei & He, Zirui & Wang, Zeyan, 2016. "Fabrication and CO2 capture performance of magnesia-stabilized carbide slag by by-product of biodiesel during calcium looping process," Applied Energy, Elsevier, vol. 168(C), pages 85-95.
    14. Wang, Peng & Guo, Yafei & Zhao, Chuanwen & Yan, Junjie & Lu, Ping, 2017. "Biomass derived wood ash with amine modification for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 201(C), pages 34-44.
    15. Jing, Jie-ying & Li, Ting-yu & Zhang, Xue-wei & Wang, Shi-dong & Feng, Jie & Turmel, William A. & Li, Wen-ying, 2017. "Enhanced CO2 sorption performance of CaO/Ca3Al2O6 sorbents and its sintering-resistance mechanism," Applied Energy, Elsevier, vol. 199(C), pages 225-233.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:8:y:2018:i:2:p:292-308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.