On the way to harness high-altitude wind power: Defining the operational asset for an airship wind generator
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2013.01.019
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Eriksson, Sandra & Bernhoff, Hans, 2011. "Loss evaluation and design optimisation for direct driven permanent magnet synchronous generators for wind power," Applied Energy, Elsevier, vol. 88(1), pages 265-271, January.
- Carranza, O. & Figueres, E. & Garcerá, G. & Gonzalez-Medina, R., 2013. "Analysis of the control structure of wind energy generation systems based on a permanent magnet synchronous generator," Applied Energy, Elsevier, vol. 103(C), pages 522-538.
- González, L.G. & Figueres, E. & Garcerá, G. & Carranza, O., 2010. "Maximum-power-point tracking with reduced mechanical stress applied to wind-energy-conversion-systems," Applied Energy, Elsevier, vol. 87(7), pages 2304-2312, July.
- Canale, M. & Fagiano, L. & Milanese, M., 2009. "KiteGen: A revolution in wind energy generation," Energy, Elsevier, vol. 34(3), pages 355-361.
- Castellani, Francesco & Vignaroli, Andrea, 2013. "An application of the actuator disc model for wind turbine wakes calculations," Applied Energy, Elsevier, vol. 101(C), pages 432-440.
- Cristina L. Archer & Ken Caldeira, 2009. "Global Assessment of High-Altitude Wind Power," Energies, MDPI, vol. 2(2), pages 1-13, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tajeddin, Alireza & Fazelpour, Farivar, 2016. "Towards realistic design of wind dams: An innovative approach to enhance wind potential," Applied Energy, Elsevier, vol. 182(C), pages 282-298.
- Adhikari, Jeevan & Sapkota, Rajesh & Panda, S.K., 2018. "Impact of altitude and power rating on power-to-weight and power-to-cost ratios of the high altitude wind power generating system," Renewable Energy, Elsevier, vol. 115(C), pages 16-27.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- K. Padmanathan & N. Kamalakannan & P. Sanjeevikumar & F. Blaabjerg & J. B. Holm-Nielsen & G. Uma & R. Arul & R. Rajesh & A. Srinivasan & J. Baskaran, 2019. "Conceptual Framework of Antecedents to Trends on Permanent Magnet Synchronous Generators for Wind Energy Conversion Systems," Energies, MDPI, vol. 12(13), pages 1-39, July.
- Dai, Juchuan & Yang, Xin & Hu, Wei & Wen, Li & Tan, Yayi, 2018. "Effect investigation of yaw on wind turbine performance based on SCADA data," Energy, Elsevier, vol. 149(C), pages 684-696.
- Chi-Jeng Bai & Wei-Cheng Wang & Po-Wei Chen & Wen-Tong Chong, 2014. "System Integration of the Horizontal-Axis Wind Turbine: The Design of Turbine Blades with an Axial-Flux Permanent Magnet Generator," Energies, MDPI, vol. 7(11), pages 1-21, November.
- Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Adetokun, B.B., 2017. "Optimal capacitance selection for a wind-driven self-excited reluctance generator under varying wind speed and load conditions," Applied Energy, Elsevier, vol. 190(C), pages 339-353.
- Cherubini, Antonello & Papini, Andrea & Vertechy, Rocco & Fontana, Marco, 2015. "Airborne Wind Energy Systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1461-1476.
- Archer, Cristina L. & Delle Monache, Luca & Rife, Daran L., 2014. "Airborne wind energy: Optimal locations and variability," Renewable Energy, Elsevier, vol. 64(C), pages 180-186.
- Ganjefar, Soheil & Mohammadi, Ali, 2016. "Variable speed wind turbines with maximum power extraction using singular perturbation theory," Energy, Elsevier, vol. 106(C), pages 510-519.
- Argatov, Ivan & Shafranov, Valentin, 2016. "Economic assessment of small-scale kite wind generators," Renewable Energy, Elsevier, vol. 89(C), pages 125-134.
- Perković, Luka & Silva, Pedro & Ban, Marko & Kranjčević, Nenad & Duić, Neven, 2013. "Harvesting high altitude wind energy for power production: The concept based on Magnus’ effect," Applied Energy, Elsevier, vol. 101(C), pages 151-160.
- Coleman, J. & Ahmad, H. & Pican, E. & Toal, D., 2014. "Modelling of a synchronous offshore pumping mode airborne wind energy farm," Energy, Elsevier, vol. 71(C), pages 569-578.
- Lunney, E. & Ban, M. & Duic, N. & Foley, A., 2017. "A state-of-the-art review and feasibility analysis of high altitude wind power in Northern Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 899-911.
- Phan, Dinh-Chung & Yamamoto, Shigeru, 2016. "Rotor speed control of doubly fed induction generator wind turbines using adaptive maximum power point tracking," Energy, Elsevier, vol. 111(C), pages 377-388.
- Ali Arshad Uppal & Manuel C. R. M. Fernandes & Sérgio Vinha & Fernando A. C. C. Fontes, 2021. "Cascade Control of the Ground Station Module of an Airborne Wind Energy System," Energies, MDPI, vol. 14(24), pages 1-25, December.
- Singh, G.K. & Senthil Kumar, A. & Saini, R.P., 2010. "Selection of capacitance for self-excited six-phase induction generator for stand-alone renewable energy generation," Energy, Elsevier, vol. 35(8), pages 3273-3283.
- Pavković, D. & Hoić, M. & Deur, J. & Petrić, J., 2014. "Energy storage systems sizing study for a high-altitude wind energy application," Energy, Elsevier, vol. 76(C), pages 91-103.
- Seo, Dong-yeon & Koo, Choongwan & Hong, Taehoon, 2015. "A Lagrangian finite element model for estimating the heating and cooling demand of a residential building with a different envelope design," Applied Energy, Elsevier, vol. 142(C), pages 66-79.
- Marwa Hassan & Alsnosy Balbaa & Hanady H. Issa & Noha H. El-Amary, 2018. "Asymptotic Output Tracked Artificial Immunity Controller for Eco-Maximum Power Point Tracking of Wind Turbine Driven by Doubly Fed Induction Generator," Energies, MDPI, vol. 11(10), pages 1-25, October.
- Trujillo, C.L. & Velasco, D. & Figueres, E. & Garcerá, G., 2010. "Analysis of active islanding detection methods for grid-connected microinverters for renewable energy processing," Applied Energy, Elsevier, vol. 87(11), pages 3591-3605, November.
- Huanqiang, Zhang & Xiaoxia, Gao & Hongkun, Lu & Qiansheng, Zhao & Xiaoxun, Zhu & Yu, Wang & Fei, Zhao, 2024. "Investigation of a new 3D wake model of offshore floating wind turbines subjected to the coupling effects of wind and wave," Applied Energy, Elsevier, vol. 365(C).
- Ali, Qazi Shahzad & Kim, Man-Hoe, 2021. "Design and performance analysis of an airborne wind turbine for high-altitude energy harvesting," Energy, Elsevier, vol. 230(C).
More about this item
Keywords
Airship wind turbine; High winds potential; Renewable energy; Wind profiles;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:112:y:2013:i:c:p:592-600. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.