IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v111y2013icp853-861.html
   My bibliography  Save this article

Higher-capacity lithium ion battery chemistries for improved residential energy storage with micro-cogeneration

Author

Listed:
  • Darcovich, K.
  • Henquin, E.R.
  • Kenney, B.
  • Davidson, I.J.
  • Saldanha, N.
  • Beausoleil-Morrison, I.

Abstract

Combined heat and power on a residential scale, also known as micro-cogeneration, is currently gaining traction as an energy savings practice. The configuration of micro-cogeneration systems is highly variable, as local climate, energy supply, energy market and the feasibility of including renewable type components such as wind turbines or photovoltaic panels are all factors. Large-scale lithium ion batteries for electrical storage in this context can provide cost savings, operational flexibility, and reduced stress on the distribution grid as well as a degree of contingency for installations relying upon unsteady renewables. Concurrently, significant advances in component materials used to make lithium ion cells offer performance improvements in terms of power output, energy capacity, robustness and longevity, thereby enhancing their prospective utility in residential micro-cogeneration installations. The present study evaluates annual residential energy use for a typical Canadian home connected to the electrical grid, equipped with a micro-cogeneration system consisting of a Stirling engine for supplying heat and power, coupled with a nominal 2kW/6kWh lithium ion battery. Two novel battery cathode chemistries, one a new Li–NCA material, the other a high voltage Ni-doped lithium manganate, are compared in the residential micro-cogeneration context with a system equipped with the presently conventional LiMn2O4 spinel-type battery.

Suggested Citation

  • Darcovich, K. & Henquin, E.R. & Kenney, B. & Davidson, I.J. & Saldanha, N. & Beausoleil-Morrison, I., 2013. "Higher-capacity lithium ion battery chemistries for improved residential energy storage with micro-cogeneration," Applied Energy, Elsevier, vol. 111(C), pages 853-861.
  • Handle: RePEc:eee:appene:v:111:y:2013:i:c:p:853-861
    DOI: 10.1016/j.apenergy.2013.03.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913003231
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.03.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Landgrebe, Albert R. & Donley, Samuel W., 1983. "Battery storage in residential applications of energy from photovoltaic sources," Applied Energy, Elsevier, vol. 15(2), pages 127-137.
    2. Stadler, M. & Kloess, M. & Groissböck, M. & Cardoso, G. & Sharma, R. & Bozchalui, M.C. & Marnay, C., 2013. "Electric storage in California’s commercial buildings," Applied Energy, Elsevier, vol. 104(C), pages 711-722.
    3. McKenna, Eoghan & McManus, Marcelle & Cooper, Sam & Thomson, Murray, 2013. "Economic and environmental impact of lead-acid batteries in grid-connected domestic PV systems," Applied Energy, Elsevier, vol. 104(C), pages 239-249.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Obara, Shin’ya, 2015. "Dynamic-characteristics analysis of an independent microgrid consisting of a SOFC triple combined cycle power generation system and large-scale photovoltaics," Applied Energy, Elsevier, vol. 141(C), pages 19-31.
    2. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    3. Anna-Lena Lane & Magdalena Boork & Patrik Thollander, 2019. "Barriers, Driving Forces and Non-Energy Benefits for Battery Storage in Photovoltaic (PV) Systems in Modern Agriculture," Energies, MDPI, vol. 12(18), pages 1-17, September.
    4. Glasgo, Brock & Azevedo, Inês Lima & Hendrickson, Chris, 2016. "How much electricity can we save by using direct current circuits in homes? Understanding the potential for electricity savings and assessing feasibility of a transition towards DC powered buildings," Applied Energy, Elsevier, vol. 180(C), pages 66-75.
    5. Yong-keon Ahn & Yong Nam Jo & Woosuk Cho & Ji-Sang Yu & Ki Jae Kim, 2019. "Mechanism of Capacity Fading in the LiNi 0.8 Co 0.1 Mn 0.1 O 2 Cathode Material for Lithium-Ion Batteries," Energies, MDPI, vol. 12(9), pages 1-10, April.
    6. Soares, F.J. & Carvalho, L. & Costa, I.C. & Iria, J.P. & Bodet, J.-M. & Jacinto, G. & Lecocq, A. & Roessner, J. & Caillard, B. & Salvi, O., 2015. "The STABALID project: Risk analysis of stationary Li-ion batteries for power system applications," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 142-175.
    7. Daniel Cardoso & Daniel Nunes & João Faria & Paulo Fael & Pedro D. Gaspar, 2023. "Intelligent Micro-Cogeneration Systems for Residential Grids: A Sustainable Solution for Efficient Energy Management," Energies, MDPI, vol. 16(13), pages 1-21, July.
    8. Ping, Ping & Wang, Qingsong & Huang, Peifeng & Sun, Jinhua & Chen, Chunhua, 2014. "Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method," Applied Energy, Elsevier, vol. 129(C), pages 261-273.
    9. Mahmud, Khizir & Amin, Uzma & Hossain, M.J. & Ravishankar, Jayashri, 2018. "Computational tools for design, analysis, and management of residential energy systems," Applied Energy, Elsevier, vol. 221(C), pages 535-556.
    10. Li, Dacheng & Guo, Songshan & He, Wei & King, Marcus & Wang, Jihong, 2021. "Combined capacity and operation optimisation of lithium-ion battery energy storage working with a combined heat and power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    11. Rosato, Antonio & Ciervo, Antonio & Ciampi, Giovanni & Scorpio, Michelangelo & Guarino, Francesco & Sibilio, Sergio, 2020. "Impact of solar field design and back-up technology on dynamic performance of a solar hybrid heating network integrated with a seasonal borehole thermal energy storage serving a small-scale residentia," Renewable Energy, Elsevier, vol. 154(C), pages 684-703.
    12. Ayuso, Pablo & Beltran, Hector & Segarra-Tamarit, Jorge & Pérez, Emilio, 2021. "Optimized profitability of LFP and NMC Li-ion batteries in residential PV applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 97-115.
    13. Antonio Rosato & Antonio Ciervo & Giovanni Ciampi & Michelangelo Scorpio & Sergio Sibilio, 2020. "Integration of Micro-Cogeneration Units and Electric Storages into a Micro-Scale Residential Solar District Heating System Operating with a Seasonal Thermal Storage," Energies, MDPI, vol. 13(20), pages 1-40, October.
    14. Zhao, Rui & Liu, Jie & Gu, Junjie, 2015. "The effects of electrode thickness on the electrochemical and thermal characteristics of lithium ion battery," Applied Energy, Elsevier, vol. 139(C), pages 220-229.
    15. Raza, Syed Shabbar & Janajreh, Isam & Ghenai, Chaouki, 2014. "Sustainability index approach as a selection criteria for energy storage system of an intermittent renewable energy source," Applied Energy, Elsevier, vol. 136(C), pages 909-920.
    16. Xue, Nansi & Du, Wenbo & Greszler, Thomas A. & Shyy, Wei & Martins, Joaquim R.R.A., 2014. "Design of a lithium-ion battery pack for PHEV using a hybrid optimization method," Applied Energy, Elsevier, vol. 115(C), pages 591-602.
    17. Zheng, Qiong & Li, Xianfeng & Cheng, Yuanhui & Ning, Guiling & Xing, Feng & Zhang, Huamin, 2014. "Development and perspective in vanadium flow battery modeling," Applied Energy, Elsevier, vol. 132(C), pages 254-266.
    18. Shaw-Williams, Damian & Susilawati, Connie, 2020. "A techno-economic evaluation of Virtual Net Metering for the Australian community housing sector," Applied Energy, Elsevier, vol. 261(C).
    19. Su, Laisuo & Zhang, Jianbo & Wang, Caijuan & Zhang, Yakun & Li, Zhe & Song, Yang & Jin, Ting & Ma, Zhao, 2016. "Identifying main factors of capacity fading in lithium ion cells using orthogonal design of experiments," Applied Energy, Elsevier, vol. 163(C), pages 201-210.
    20. Damian Shaw-Williams & Connie Susilawati & Geoffrey Walker, 2018. "Value of Residential Investment in Photovoltaics and Batteries in Networks: A Techno-Economic Analysis," Energies, MDPI, vol. 11(4), pages 1-25, April.
    21. Troy, Stefanie & Schreiber, Andrea & Reppert, Thorsten & Gehrke, Hans-Gregor & Finsterbusch, Martin & Uhlenbruck, Sven & Stenzel, Peter, 2016. "Life Cycle Assessment and resource analysis of all-solid-state batteries," Applied Energy, Elsevier, vol. 169(C), pages 757-767.
    22. Darcovich, K. & Kenney, B. & MacNeil, D.D. & Armstrong, M.M., 2015. "Control strategies and cycling demands for Li-ion storage batteries in residential micro-cogeneration systems," Applied Energy, Elsevier, vol. 141(C), pages 32-41.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tervo, Eric & Agbim, Kenechi & DeAngelis, Freddy & Hernandez, Jeffrey & Kim, Hye Kyung & Odukomaiya, Adewale, 2018. "An economic analysis of residential photovoltaic systems with lithium ion battery storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1057-1066.
    2. Gitizadeh, Mohsen & Fakharzadegan, Hamid, 2014. "Battery capacity determination with respect to optimized energy dispatch schedule in grid-connected photovoltaic (PV) systems," Energy, Elsevier, vol. 65(C), pages 665-674.
    3. Hartmann, Bálint & Divényi, Dániel & Vokony, István, 2018. "Evaluation of business possibilities of energy storage at commercial and industrial consumers – A case study," Applied Energy, Elsevier, vol. 222(C), pages 59-66.
    4. Ren, Zhengen & Grozev, George & Higgins, Andrew, 2016. "Modelling impact of PV battery systems on energy consumption and bill savings of Australian houses under alternative tariff structures," Renewable Energy, Elsevier, vol. 89(C), pages 317-330.
    5. Kuang, Yanqing & Chen, Yang & Hu, Mengqi & Yang, Dong, 2017. "Influence analysis of driver behavior and building category on economic performance of electric vehicle to grid and building integration," Applied Energy, Elsevier, vol. 207(C), pages 427-437.
    6. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2015. "Environmental impacts of microgeneration: Integrating solar PV, Stirling engine CHP and battery storage," Applied Energy, Elsevier, vol. 139(C), pages 245-259.
    7. Aidong Zeng & Sipeng Hao & Jia Ning & Qingshan Xu & Ling Jiang, 2020. "Research on Real-Time Optimized Operation and Dispatching Strategy for Integrated Energy System Based on Error Correction," Energies, MDPI, vol. 13(11), pages 1-21, June.
    8. Martin, Nigel & Rice, John, 2021. "Power outages, climate events and renewable energy: Reviewing energy storage policy and regulatory options for Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    9. Dufo-López, Rodolfo, 2015. "Optimisation of size and control of grid-connected storage under real time electricity pricing conditions," Applied Energy, Elsevier, vol. 140(C), pages 395-408.
    10. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2021. "Rate design with distributed energy resources and electric vehicles: A Californian case study," Energy Economics, Elsevier, vol. 102(C).
    11. Di Blasi, A. & Briguglio, N. & Di Blasi, O. & Antonucci, V., 2014. "Charge–discharge performance of carbon fiber-based electrodes in single cell and short stack for vanadium redox flow battery," Applied Energy, Elsevier, vol. 125(C), pages 114-122.
    12. DeForest, Nicholas & Mendes, Gonçalo & Stadler, Michael & Feng, Wei & Lai, Judy & Marnay, Chris, 2014. "Optimal deployment of thermal energy storage under diverse economic and climate conditions," Applied Energy, Elsevier, vol. 119(C), pages 488-496.
    13. Jie Ji & Xin Xia & Wei Ni & Kailiang Teng & Chunqiong Miao & Yaodong Wang & Tony Roskilly, 2019. "An Experimental and Simulation Study on Optimisation of the Operation of a Distributed Power Generation System with Energy Storage—Meeting Dynamic Household Electricity Demand," Energies, MDPI, vol. 12(6), pages 1-16, March.
    14. Carlos J. Sarasa-Maestro & Rodolfo Dufo-López & José L. Bernal-Agustín, 2016. "Analysis of Photovoltaic Self-Consumption Systems," Energies, MDPI, vol. 9(9), pages 1-18, August.
    15. Chatzisideris, Marios D. & Ohms, Pernille K. & Espinosa, Nieves & Krebs, Frederik C. & Laurent, Alexis, 2019. "Economic and environmental performances of organic photovoltaics with battery storage for residential self-consumption," Applied Energy, Elsevier, vol. 256(C).
    16. Gough, Rebecca & Dickerson, Charles & Rowley, Paul & Walsh, Chris, 2017. "Vehicle-to-grid feasibility: A techno-economic analysis of EV-based energy storage," Applied Energy, Elsevier, vol. 192(C), pages 12-23.
    17. Di Blasi, O. & Briguglio, N. & Busacca, C. & Ferraro, M. & Antonucci, V. & Di Blasi, A., 2015. "Electrochemical investigation of thermically treated graphene oxides as electrode materials for vanadium redox flow battery," Applied Energy, Elsevier, vol. 147(C), pages 74-81.
    18. Di Blasi, A. & Busaccaa, C. & Di Blasia, O. & Briguglioa, N. & Squadritoa, G. & Antonuccia, V., 2017. "Synthesis of flexible electrodes based on electrospun carbon nanofibers with Mn3O4 nanoparticles for vanadium redox flow battery application," Applied Energy, Elsevier, vol. 190(C), pages 165-171.
    19. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    20. Steen, David & Stadler, Michael & Cardoso, Gonçalo & Groissböck, Markus & DeForest, Nicholas & Marnay, Chris, 2015. "Modeling of thermal storage systems in MILP distributed energy resource models," Applied Energy, Elsevier, vol. 137(C), pages 782-792.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:111:y:2013:i:c:p:853-861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.