IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v140y2015icp142-175.html
   My bibliography  Save this article

The STABALID project: Risk analysis of stationary Li-ion batteries for power system applications

Author

Listed:
  • Soares, F.J.
  • Carvalho, L.
  • Costa, I.C.
  • Iria, J.P.
  • Bodet, J.-M.
  • Jacinto, G.
  • Lecocq, A.
  • Roessner, J.
  • Caillard, B.
  • Salvi, O.

Abstract

This work presents a risk analysis performed to stationary Li-ion batteries within the framework of the STABALID project. The risk analysis had as main objective analysing the variety of hazards and dangerous situations that might be experienced by the battery during its life cycle and providing useful information on how to prevent or manage those undesired events. The first task of the risk analysis was the identification of all the hazards (or risks) that may arise during the battery life cycle. Afterwards, the hazards identified were mapped in the different stages of the battery life cycle and two analyses were performed for each stage: an internal problem analysis and an external peril analysis. For both, the dangerous phenomena and the undesirable events resulting from each hazard was evaluated in terms of probability of occurrence and severity. Then, a risk assessment was carried out according to a predefined risk matrix and a preliminary set of risk mitigation measures were proposed to reduce their probability of occurrence and/or their severity level. The results obtained show that it is possible to reduce the probability of occurrence/severity of all the risks associated to the battery life cycle to acceptable or tolerable levels.

Suggested Citation

  • Soares, F.J. & Carvalho, L. & Costa, I.C. & Iria, J.P. & Bodet, J.-M. & Jacinto, G. & Lecocq, A. & Roessner, J. & Caillard, B. & Salvi, O., 2015. "The STABALID project: Risk analysis of stationary Li-ion batteries for power system applications," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 142-175.
  • Handle: RePEc:eee:reensy:v:140:y:2015:i:c:p:142-175
    DOI: 10.1016/j.ress.2015.04.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015001167
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.04.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ludig, Sylvie & Haller, Markus & Schmid, Eva & Bauer, Nico, 2011. "Fluctuating renewables in a long-term climate change mitigation strategy," Energy, Elsevier, vol. 36(11), pages 6674-6685.
    2. Darcovich, K. & Henquin, E.R. & Kenney, B. & Davidson, I.J. & Saldanha, N. & Beausoleil-Morrison, I., 2013. "Higher-capacity lithium ion battery chemistries for improved residential energy storage with micro-cogeneration," Applied Energy, Elsevier, vol. 111(C), pages 853-861.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carla Menale & Stefano Constà & Vincenzo Sglavo & Livia Della Seta & Roberto Bubbico, 2022. "Experimental Investigation of Overdischarge Effects on Commercial Li-Ion Cells," Energies, MDPI, vol. 15(22), pages 1-16, November.
    2. Gandoman, Foad H. & Ahmadi, Abdollah & Bossche, Peter Van den & Van Mierlo, Joeri & Omar, Noshin & Nezhad, Ali Esmaeel & Mavalizadeh, Hani & Mayet, Clément, 2019. "Status and future perspectives of reliability assessment for electric vehicles," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 1-16.
    3. Esfandyari, M.J. & Esfahanian, V. & Hairi Yazdi, M.R. & Nehzati, H. & Shekoofa, O., 2019. "A new approach to consider the influence of aging state on Lithium-ion battery state of power estimation for hybrid electric vehicle," Energy, Elsevier, vol. 176(C), pages 505-520.
    4. Martina Cianciullo & Giorgio Vilardi & Barbara Mazzarotta & Roberto Bubbico, 2022. "Simulation of the Thermal Runaway Onset in Li-Ion Cells—Influence of Cathode Materials and Operating Conditions," Energies, MDPI, vol. 15(11), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    3. Fürsch, Michaela & Hagspiel, Simeon & Jägemann, Cosima & Nagl, Stephan & Lindenberger, Dietmar & Tröster, Eckehard, 2013. "The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050," Applied Energy, Elsevier, vol. 104(C), pages 642-652.
    4. Knopf, Brigitte & Nahmmacher, Paul & Schmid, Eva, 2015. "The European renewable energy target for 2030 – An impact assessment of the electricity sector," Energy Policy, Elsevier, vol. 85(C), pages 50-60.
    5. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.
    6. Daniel Cardoso & Daniel Nunes & João Faria & Paulo Fael & Pedro D. Gaspar, 2023. "Intelligent Micro-Cogeneration Systems for Residential Grids: A Sustainable Solution for Efficient Energy Management," Energies, MDPI, vol. 16(13), pages 1-21, July.
    7. Antonio Rosato & Antonio Ciervo & Giovanni Ciampi & Michelangelo Scorpio & Sergio Sibilio, 2020. "Integration of Micro-Cogeneration Units and Electric Storages into a Micro-Scale Residential Solar District Heating System Operating with a Seasonal Thermal Storage," Energies, MDPI, vol. 13(20), pages 1-40, October.
    8. Tafarte, Philip & Das, Subhashree & Eichhorn, Marcus & Thrän, Daniela, 2014. "Small adaptations, big impacts: Options for an optimized mix of variable renewable energy sources," Energy, Elsevier, vol. 72(C), pages 80-92.
    9. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    10. Thanh Tu Tran & Shinichiro Fujimori & Toshihiko Masui, 2016. "Realizing the Intended Nationally Determined Contribution: The Role of Renewable Energies in Vietnam," Energies, MDPI, vol. 9(8), pages 1-17, July.
    11. Haller, Markus & Ludig, Sylvie & Bauer, Nico, 2012. "Bridging the scales: A conceptual model for coordinated expansion of renewable power generation, transmission and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2687-2695.
    12. McCallum, Peter & Jenkins, David P. & Peacock, Andrew D. & Patidar, Sandhya & Andoni, Merlinda & Flynn, David & Robu, Valentin, 2019. "A multi-sectoral approach to modelling community energy demand of the built environment," Energy Policy, Elsevier, vol. 132(C), pages 865-875.
    13. Simoes, Sofia & Zeyringer, Marianne & Mayr, Dieter & Huld, Thomas & Nijs, Wouter & Schmidt, Johannes, 2017. "Impact of different levels of geographical disaggregation of wind and PV electricity generation in large energy system models: A case study for Austria," Renewable Energy, Elsevier, vol. 105(C), pages 183-198.
    14. Troy, Stefanie & Schreiber, Andrea & Reppert, Thorsten & Gehrke, Hans-Gregor & Finsterbusch, Martin & Uhlenbruck, Sven & Stenzel, Peter, 2016. "Life Cycle Assessment and resource analysis of all-solid-state batteries," Applied Energy, Elsevier, vol. 169(C), pages 757-767.
    15. Adeel ur Rehman & Bhajan Lal, 2022. "RETRACTED: Gas Hydrate-Based CO 2 Capture: A Journey from Batch to Continuous," Energies, MDPI, vol. 15(21), pages 1-27, November.
    16. Francesco Gardumi & Manuel Welsch & Mark Howells & Emanuela Colombo, 2019. "Representation of Balancing Options for Variable Renewables in Long-Term Energy System Models: An Application to OSeMOSYS," Energies, MDPI, vol. 12(12), pages 1-22, June.
    17. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Seljom, Pernille & Lind, Arne & Wagner, Fabian & Mesfun, Sennai, 2020. "Short-term solar and wind variability in long-term energy system models - A European case study," Energy, Elsevier, vol. 209(C).
    18. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
    19. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2024. "Assessing the relative impacts of maximum investment rate and temporal detail in capacity expansion models applied to power systems," Energy, Elsevier, vol. 290(C).
    20. Thomas Heggarty & Jean-Yves Bourmaud & Robin Girard & Georges Kariniotakis, 2024. "Assessing the relative impacts of maximum investment rate and temporal detail in capacity expansion models applied to power systems," Post-Print hal-04383397, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:140:y:2015:i:c:p:142-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.