IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v111y2013icp731-741.html
   My bibliography  Save this article

Carbon dioxide capture by single droplet using Selexol, Rectisol and water as absorbents: A theoretical approach

Author

Listed:
  • Chen, Wei-Hsin
  • Chen, Shu-Mi
  • Hung, Chen-I

Abstract

A theoretical method is developed to analyze carbon dioxide capture by a stationary single droplet for evaluating the fundamental mass transfer behavior. In the method, the gas-phase diffusion is predicted using a similarity method and the technique of separation of variable is employed to approach the liquid-phase diffusion. At the interface, a finite difference method is applied to connect the CO2 diffusion between the two phases. The individual capture processes of CO2 by three different absorbents of Selexol, Rectisol and water, are taken into account. The operating pressure and temperature of Selexol and water are in the ranges of 30–60atm and 303–333K, respectively, and they are 30–60atm and 240–270K for Rectisol. The analysis indicates that an increase in temperature decreases the CO2 capture amount and absorption time by Selexol and Rectisol droplets. The absorption time is more sensitive to the operating temperature than the capture amount. As a result, the CO2 absorption rates by the droplets are increased when the temperature increases. Among the three absorbents, Rectisol has the highest capacity to capture CO2 and its absorption time is in a comparable state to the other two absorbents. This results in that its absorption rate is larger than the others by an order of magnitude.

Suggested Citation

  • Chen, Wei-Hsin & Chen, Shu-Mi & Hung, Chen-I, 2013. "Carbon dioxide capture by single droplet using Selexol, Rectisol and water as absorbents: A theoretical approach," Applied Energy, Elsevier, vol. 111(C), pages 731-741.
  • Handle: RePEc:eee:appene:v:111:y:2013:i:c:p:731-741
    DOI: 10.1016/j.apenergy.2013.05.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913004637
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.05.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lampert, Krzysztof & Ziebik, Andrzej, 2007. "Comparative analysis of energy requirements of CO2 removal from metallurgical fuel gases," Energy, Elsevier, vol. 32(4), pages 521-527.
    2. Siefert, Nicholas S. & Litster, Shawn, 2013. "Exergy and economic analyses of advanced IGCC–CCS and IGFC–CCS power plants," Applied Energy, Elsevier, vol. 107(C), pages 315-328.
    3. Zhou, Wenji & Zhu, Bing & Chen, Dingjiang & Zhao, Fangxian & Fei, Weiyang, 2011. "Technoeconomic assessment of China’s indirect coal liquefaction projects with different CO2 capture alternatives," Energy, Elsevier, vol. 36(11), pages 6559-6566.
    4. Kunze, Christian & Spliethoff, Hartmut, 2012. "Assessment of oxy-fuel, pre- and post-combustion-based carbon capture for future IGCC plants," Applied Energy, Elsevier, vol. 94(C), pages 109-116.
    5. Sipöcz, Nikolett & Tobiesen, Finn Andrew & Assadi, Mohsen, 2011. "The use of Artificial Neural Network models for CO2 capture plants," Applied Energy, Elsevier, vol. 88(7), pages 2368-2376, July.
    6. Hu, Yukun & Yan, Jinyue & Li, Hailong, 2012. "Effects of flue gas recycle on oxy-coal power generation systems," Applied Energy, Elsevier, vol. 97(C), pages 255-263.
    7. Hedin, Niklas & Andersson, Linnéa & Bergström, Lennart & Yan, Jinyue, 2013. "Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption," Applied Energy, Elsevier, vol. 104(C), pages 418-433.
    8. Olajire, Abass A., 2010. "CO2 capture and separation technologies for end-of-pipe applications – A review," Energy, Elsevier, vol. 35(6), pages 2610-2628.
    9. Tippayawong, N. & Thanompongchart, P., 2010. "Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor," Energy, Elsevier, vol. 35(12), pages 4531-4535.
    10. Chen, Chao & Rubin, Edward S., 2009. "CO2 control technology effects on IGCC plant performance and cost," Energy Policy, Elsevier, vol. 37(3), pages 915-924, March.
    11. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I, 2011. "A theoretical analysis of the capture of greenhouse gases by single water droplet at atmospheric and elevated pressures," Applied Energy, Elsevier, vol. 88(12), pages 5120-5130.
    12. Martelli, Emanuele & Kreutz, Thomas & Carbo, Michiel & Consonni, Stefano & Jansen, Daniel, 2011. "Shell coal IGCCS with carbon capture: Conventional gas quench vs. innovative configurations," Applied Energy, Elsevier, vol. 88(11), pages 3978-3989.
    13. Gibbins, Jon & Chalmers, Hannah, 2008. "Carbon capture and storage," Energy Policy, Elsevier, vol. 36(12), pages 4317-4322, December.
    14. Li, H. & Yan, J. & Yan, J. & Anheden, M., 2009. "Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system," Applied Energy, Elsevier, vol. 86(2), pages 202-213, February.
    15. Li, Hailong & Ditaranto, Mario & Yan, Jinyue, 2012. "Carbon capture with low energy penalty: Supplementary fired natural gas combined cycles," Applied Energy, Elsevier, vol. 97(C), pages 164-169.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amith Karayil & Ahmed Elseragy & Aliyu M. Aliyu, 2024. "An Assessment of CO 2 Capture Technologies towards Global Carbon Net Neutrality," Energies, MDPI, vol. 17(6), pages 1-26, March.
    2. N.Borhani, Tohid & Wang, Meihong, 2019. "Role of solvents in CO2 capture processes: The review of selection and design methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    3. Zhu, Xuancan & Shi, Yixiang & Cai, Ningsheng, 2016. "Integrated gasification combined cycle with carbon dioxide capture by elevated temperature pressure swing adsorption," Applied Energy, Elsevier, vol. 176(C), pages 196-208.
    4. Li, Hongwei & Tang, Zhigang & Li, Na & Cui, Longpeng & Mao, Xian-zhong, 2020. "Mechanism and process study on steel slag enhancement for CO2 capture by seawater," Applied Energy, Elsevier, vol. 276(C).
    5. Lee, Woo-Sung & Lee, Jae-Cheol & Oh, Hyun-Taek & Baek, Seung-Won & Oh, Min & Lee, Chang-Ha, 2017. "Performance, economic and exergy analyses of carbon capture processes for a 300 MW class integrated gasification combined cycle power plant," Energy, Elsevier, vol. 134(C), pages 731-742.
    6. Dorota Burchart & Magdalena Gazda-Grzywacz & Przemysław Grzywacz & Piotr Burmistrz & Katarzyna Zarębska, 2022. "Life Cycle Assessment of Hydrogen Production from Coal Gasification as an Alternative Transport Fuel," Energies, MDPI, vol. 16(1), pages 1-18, December.
    7. Li, Hongwei & Zhang, Rongjun & Wang, Tianye & Wu, Yu & Xu, Run & Wang, Qiang & Tang, Zhigang, 2022. "Performance evaluation and environment risk assessment of steel slag enhancement for seawater to capture CO2," Energy, Elsevier, vol. 238(PB).
    8. Chen, Jianjun & Lam, Hon Loong & Qian, Yu & Yang, Siyu, 2021. "Combined energy consumption and CO2 capture management: Improved acid gas removal process integrated with CO2 liquefaction," Energy, Elsevier, vol. 215(PA).
    9. Xu, Cheng & Li, Xiaosa & Xin, Tuantuan & Liu, Xin & Xu, Gang & Wang, Min & Yang, Yongping, 2019. "A thermodynamic analysis and economic assessment of a modified de-carbonization coal-fired power plant incorporating a supercritical CO2 power cycle and an absorption heat transformer," Energy, Elsevier, vol. 179(C), pages 30-45.
    10. Xu, Yin & Jin, Baosheng & Zhao, Yongling & Hu, Eric J. & Chen, Xiaole & Li, Xiaochuan, 2018. "Numerical simulation of aqueous ammonia-based CO2 absorption in a sprayer tower: An integrated model combining gas-liquid hydrodynamics and chemistry," Applied Energy, Elsevier, vol. 211(C), pages 318-333.
    11. Theo, Wai Lip & Lim, Jeng Shiun & Hashim, Haslenda & Mustaffa, Azizul Azri & Ho, Wai Shin, 2016. "Review of pre-combustion capture and ionic liquid in carbon capture and storage," Applied Energy, Elsevier, vol. 183(C), pages 1633-1663.
    12. Li, Hongwei & Tang, Zhigang & Xing, Xiao & Guo, Dong & Cui, Longpeng & Mao, Xian-zhong, 2018. "Study of CO2 capture by seawater and its reinforcement," Energy, Elsevier, vol. 164(C), pages 1135-1144.
    13. Li, Hongwei & Tang, Zhigang & He, Zhimin & Gui, Xia & Cui, Longpeng & Mao, Xian-zhong, 2020. "Structure-activity relationship for CO2 absorbent," Energy, Elsevier, vol. 197(C).
    14. Yang, Sheng & Zhang, Lu & Song, Dongran, 2022. "Conceptual design, optimization and thermodynamic analysis of a CO2 capture process based on Rectisol," Energy, Elsevier, vol. 244(PA).
    15. Shehzad, Areeb & Bashir, Mohammed J.K. & Sethupathi, Sumathi, 2016. "System analysis for synthesis gas (syngas) production in Pakistan from municipal solid waste gasification using a circulating fluidized bed gasifier," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1302-1311.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
    2. Goto, Kazuya & Yogo, Katsunori & Higashii, Takayuki, 2013. "A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture," Applied Energy, Elsevier, vol. 111(C), pages 710-720.
    3. Choi, Munkyoung & Cho, Minki & Lee, J.W., 2016. "Empirical formula for the mass flux in chemical absorption of CO2 with ammonia droplets," Applied Energy, Elsevier, vol. 164(C), pages 1-9.
    4. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I, 2012. "Influence of droplet mutual interaction on carbon dioxide capture process in sprays," Applied Energy, Elsevier, vol. 92(C), pages 185-193.
    5. Li, Kangkang & Yu, Hai & Qi, Guojie & Feron, Paul & Tade, Moses & Yu, Jingwen & Wang, Shujuan, 2015. "Rate-based modelling of combined SO2 removal and NH3 recycling integrated with an aqueous NH3-based CO2 capture process," Applied Energy, Elsevier, vol. 148(C), pages 66-77.
    6. Sreenivasulu, B. & Gayatri, D.V. & Sreedhar, I. & Raghavan, K.V., 2015. "A journey into the process and engineering aspects of carbon capture technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1324-1350.
    7. Giuffrida, A. & Bonalumi, D. & Lozza, G., 2013. "Amine-based post-combustion CO2 capture in air-blown IGCC systems with cold and hot gas clean-up," Applied Energy, Elsevier, vol. 110(C), pages 44-54.
    8. Wu, Hai-bo & Xu, Ming-xin & Li, Yan-bing & Wu, Jin-hua & Shen, Jian-chong & Liao, Haiyan, 2020. "Experimental research on the process of compression and purification of CO2 in oxy-fuel combustion," Applied Energy, Elsevier, vol. 259(C).
    9. Song, Chun Feng & Kitamura, Yutaka & Li, Shu Hong, 2012. "Evaluation of Stirling cooler system for cryogenic CO2 capture," Applied Energy, Elsevier, vol. 98(C), pages 491-501.
    10. Tola, Vittorio & Pettinau, Alberto, 2014. "Power generation plants with carbon capture and storage: A techno-economic comparison between coal combustion and gasification technologies," Applied Energy, Elsevier, vol. 113(C), pages 1461-1474.
    11. Luis Míguez, José & Porteiro, Jacobo & Pérez-Orozco, Raquel & Patiño, David & Rodríguez, Sandra, 2018. "Evolution of CO2 capture technology between 2007 and 2017 through the study of patent activity," Applied Energy, Elsevier, vol. 211(C), pages 1282-1296.
    12. Sreedhar, I. & Vaidhiswaran, R. & Kamani, Bansi. M. & Venugopal, A., 2017. "Process and engineering trends in membrane based carbon capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 659-684.
    13. Ben-Mansour, R. & Habib, M.A. & Bamidele, O.E. & Basha, M. & Qasem, N.A.A. & Peedikakkal, A. & Laoui, T. & Ali, M., 2016. "Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review," Applied Energy, Elsevier, vol. 161(C), pages 225-255.
    14. Basavaraja, R.J. & Jayanti, S., 2015. "Viability of fuel switching of a gas-fired power plant operating in chemical looping combustion mode," Energy, Elsevier, vol. 81(C), pages 213-221.
    15. Kobayashi, Makoto & Akiho, Hiroyuki & Nakao, Yoshinobu, 2015. "Performance evaluation of porous sodium aluminate sorbent for halide removal process in oxy-fuel IGCC power generation plant," Energy, Elsevier, vol. 92(P3), pages 320-327.
    16. Xu, Shisen & Ren, Yongqiang & Wang, Baomin & Xu, Yue & Chen, Liang & Wang, Xiaolong & Xiao, Tiancun, 2014. "Development of a novel 2-stage entrained flow coal dry powder gasifier," Applied Energy, Elsevier, vol. 113(C), pages 318-323.
    17. Ganapathy, Harish & Steinmayer, Sascha & Shooshtari, Amir & Dessiatoun, Serguei & Ohadi, Michael M. & Alshehhi, Mohamed, 2016. "Process intensification characteristics of a microreactor absorber for enhanced CO2 capture," Applied Energy, Elsevier, vol. 162(C), pages 416-427.
    18. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I., 2012. "A study of influence of acoustic excitation on carbon dioxide capture by a droplet," Energy, Elsevier, vol. 37(1), pages 311-321.
    19. Prabu, V., 2015. "Integration of in-situ CO2-oxy coal gasification with advanced power generating systems performing in a chemical looping approach of clean combustion," Applied Energy, Elsevier, vol. 140(C), pages 1-13.
    20. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I, 2011. "A theoretical analysis of the capture of greenhouse gases by single water droplet at atmospheric and elevated pressures," Applied Energy, Elsevier, vol. 88(12), pages 5120-5130.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:111:y:2013:i:c:p:731-741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.