IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i11p2335-2343.html
   My bibliography  Save this article

Applying a non-intrusive energy-management system to economic dispatch for a cogeneration system and power utility

Author

Listed:
  • Chang, Hsueh-Hsien
  • Yang, Hong-Tzer

Abstract

Non-intrusive energy-management (NIEM) techniques are based on energy signatures. While such approaches lack transient energy signatures, the reliability and accuracy of recognition results cannot be determined. By using neural networks (NNs) in combination with turn-on transient energy analysis, this study attempts to identify load demands and improve recognition accuracy of NIEM results. Case studies are presented that apply various methods to compare training algorithms and classifiers in terms of artificial neural networks (ANN) due to various factors that determine whether a network is being used for pattern recognition. Additionally, in combination with electromagnetic transient program (EMTP) simulations, calculating the turn-on transient energy facilitate load can lead to identification and a significant improvement in the accuracy of NIEM results. Analysis results indicate that an NIEM system can effectively manage energy demands within economic dispatch for a cogeneration system and power utility. Additionally, a new method based on genetic algorithms (GAs) is used to develop a novel operational strategy of economic dispatch for a cogeneration system in a regulated market and approach the global optimum with typical environmental constraints for a cogeneration plant. Economic dispatch results indicate that the NIEM system based on energy demands can estimate accurately the energy contribution from the cogeneration system and power utility, and further reduce air pollution. Moreover, applying the NIEM system for economic dispatch can markedly reduce computational time and power costs.

Suggested Citation

  • Chang, Hsueh-Hsien & Yang, Hong-Tzer, 2009. "Applying a non-intrusive energy-management system to economic dispatch for a cogeneration system and power utility," Applied Energy, Elsevier, vol. 86(11), pages 2335-2343, November.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:11:p:2335-2343
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00083-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vahidinasab, V. & Jadid, S., 2009. "Multiobjective environmental/techno-economic approach for strategic bidding in energy markets," Applied Energy, Elsevier, vol. 86(4), pages 496-504, April.
    2. Kelly Kissock, J. & Eger, Carl, 2008. "Measuring industrial energy savings," Applied Energy, Elsevier, vol. 85(5), pages 347-361, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alipour, Manijeh & Mohammadi-Ivatloo, Behnam & Zare, Kazem, 2014. "Stochastic risk-constrained short-term scheduling of industrial cogeneration systems in the presence of demand response programs," Applied Energy, Elsevier, vol. 136(C), pages 393-404.
    2. Bonfigli, Roberto & Principi, Emanuele & Fagiani, Marco & Severini, Marco & Squartini, Stefano & Piazza, Francesco, 2017. "Non-intrusive load monitoring by using active and reactive power in additive Factorial Hidden Markov Models," Applied Energy, Elsevier, vol. 208(C), pages 1590-1607.
    3. Canizes, Bruno & Soares, João & Faria, Pedro & Vale, Zita, 2013. "Mixed integer non-linear programming and Artificial Neural Network based approach to ancillary services dispatch in competitive electricity markets," Applied Energy, Elsevier, vol. 108(C), pages 261-270.
    4. Yan, Lei & Tian, Wei & Han, Jiayu & Li, Zuy, 2022. "Event-driven two-stage solution to non-intrusive load monitoring," Applied Energy, Elsevier, vol. 311(C).
    5. Tsai, Men-Shen & Lin, Yu-Hsiu, 2012. "Modern development of an Adaptive Non-Intrusive Appliance Load Monitoring system in electricity energy conservation," Applied Energy, Elsevier, vol. 96(C), pages 55-73.
    6. Chang, Hsueh-Hsien, 2011. "Genetic algorithms and non-intrusive energy management system based economic dispatch for cogeneration units," Energy, Elsevier, vol. 36(1), pages 181-190.
    7. Liu, Bo & Luan, Wenpeng & Yu, Yixin, 2017. "Dynamic time warping based non-intrusive load transient identification," Applied Energy, Elsevier, vol. 195(C), pages 634-645.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sukjoon Oh & John F. Gardner, 2022. "Large Scale Energy Signature Analysis: Tools for Utility Managers and Planners," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    2. Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.
    3. Kuo, Cheng-Chien, 2010. "Wind energy dispatch considering environmental and economic factors," Renewable Energy, Elsevier, vol. 35(10), pages 2217-2227.
    4. Harris, A.R. & Rogers, Michelle Marinich & Miller, Carol J. & McElmurry, Shawn P. & Wang, Caisheng, 2015. "Residential emissions reductions through variable timing of electricity consumption," Applied Energy, Elsevier, vol. 158(C), pages 484-489.
    5. Wei, Wei & Liu, Feng & Wang, Jianhui & Chen, Laijun & Mei, Shengwei & Yuan, Tiejiang, 2016. "Robust environmental-economic dispatch incorporating wind power generation and carbon capture plants," Applied Energy, Elsevier, vol. 183(C), pages 674-684.
    6. Pasquali, Andrea & Klinge Jacobsen, Henrik, 2019. "Construction of energy savings cost curves: An application for Denmark," MPRA Paper 93076, University Library of Munich, Germany.
    7. Colorado, D. & Hernández, J.A. & Rivera, W. & Martínez, H. & Juárez, D., 2011. "Optimal operation conditions for a single-stage heat transformer by means of an artificial neural network inverse," Applied Energy, Elsevier, vol. 88(4), pages 1281-1290, April.
    8. Ke, Ming-Tsun & Yeh, Chia-Hung & Su, Cheng-Jie, 2017. "Cloud computing platform for real-time measurement and verification of energy performance," Applied Energy, Elsevier, vol. 188(C), pages 497-507.
    9. Behrangrad, Mahdi & Sugihara, Hideharu & Funaki, Tsuyoshi, 2011. "Effect of optimal spinning reserve requirement on system pollution emission considering reserve supplying demand response in the electricity market," Applied Energy, Elsevier, vol. 88(7), pages 2548-2558, July.
    10. Walter, Travis & Price, Phillip N. & Sohn, Michael D., 2014. "Uncertainty estimation improves energy measurement and verification procedures," Applied Energy, Elsevier, vol. 130(C), pages 230-236.
    11. Li, Y.F. & Li, Y.P. & Huang, G.H. & Chen, X., 2010. "Energy and environmental systems planning under uncertainty--An inexact fuzzy-stochastic programming approach," Applied Energy, Elsevier, vol. 87(10), pages 3189-3211, October.
    12. Ghadikolaei, Hadi Moghimi & Tajik, Elham & Aghaei, Jamshid & Charwand, Mansour, 2012. "Integrated day-ahead and hour-ahead operation model of discos in retail electricity markets considering DGs and CO2 emission penalty cost," Applied Energy, Elsevier, vol. 95(C), pages 174-185.
    13. Ye, Xianming & Xia, Xiaohua, 2016. "Optimal metering plan for measurement and verification on a lighting case study," Energy, Elsevier, vol. 95(C), pages 580-592.
    14. Zou, Dexuan & Li, Steven & Wang, Gai-Ge & Li, Zongyan & Ouyang, Haibin, 2016. "An improved differential evolution algorithm for the economic load dispatch problems with or without valve-point effects," Applied Energy, Elsevier, vol. 181(C), pages 375-390.
    15. du Plessis, Gideon Edgar & Liebenberg, Leon & Mathews, Edward Henry, 2013. "Case study: The effects of a variable flow energy saving strategy on a deep-mine cooling system," Applied Energy, Elsevier, vol. 102(C), pages 700-709.
    16. Shayegan-Rad, Ali & Badri, Ali & Zangeneh, Ali, 2017. "Day-ahead scheduling of virtual power plant in joint energy and regulation reserve markets under uncertainties," Energy, Elsevier, vol. 121(C), pages 114-125.
    17. Chen, Yongbao & Xu, Peng & Chu, Yiyi & Li, Weilin & Wu, Yuntao & Ni, Lizhou & Bao, Yi & Wang, Kun, 2017. "Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings," Applied Energy, Elsevier, vol. 195(C), pages 659-670.
    18. Salahi, Niloofar & Jafari, Mohsen A., 2016. "Energy-Performance as a driver for optimal production planning," Applied Energy, Elsevier, vol. 174(C), pages 88-100.
    19. May, Gökan & Barletta, Ilaria & Stahl, Bojan & Taisch, Marco, 2015. "Energy management in production: A novel method to develop key performance indicators for improving energy efficiency," Applied Energy, Elsevier, vol. 149(C), pages 46-61.
    20. Chen, Yizhong & He, Li & Li, Jing & Cheng, Xi & Lu, Hongwei, 2016. "An inexact bi-level simulation–optimization model for conjunctive regional renewable energy planning and air pollution control for electric power generation systems," Applied Energy, Elsevier, vol. 183(C), pages 969-983.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:11:p:2335-2343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.