IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v108y2013icp137-148.html
   My bibliography  Save this article

Development of an optimized artificial neural network model for combined heat and power micro gas turbines

Author

Listed:
  • Nikpey, H.
  • Assadi, M.
  • Breuhaus, P.

Abstract

Micro gas turbines are considered an efficient alternative to costly generation and transmission of electricity, especially in remote areas and in combined heat and power (CHP) applications. Tools for remote monitoring and diagnostics, which are easy to apply, would be needed for the realization of distributed CHP. This paper reports the development of a validated artificial neural network (ANN) model for efficient and appropriate monitoring of a micro gas turbine. This study is based on experimental data obtained from a Turbec T100 micro gas turbine. The gas turbine test rig used in this study consists of a modified engine with extended measurement points providing extensive data suitable for data-driven modeling. ANNs, in contrast to mathematical models, do not require detailed and exact component characteristics, making them applicable for monitoring in many cases. The developed ANN model was based on a multi-layer feed forward network with back-propagation algorithm. Relations between the inputs and outputs of an ANN model are not implemented by physical equations but are built up during the training process. Thus, a systematic sensitivity analysis, conducted in several steps, was performed to investigate the dependency between initially selected input and output parameters. Based on sensitivity analysis results, the “optimized” set of input parameters and final outputs were concluded, taking into account prediction accuracy. The procedure of the ANN model development and sensitivity analysis are discussed in detail. The mean relative error (MRE) was used to evaluate the prediction accuracy of the developed networks with respect to experimental data which were not used during the training. The prediction results showed that the final optimum ANN model can serve as an accurate baseline model for monitoring applications.

Suggested Citation

  • Nikpey, H. & Assadi, M. & Breuhaus, P., 2013. "Development of an optimized artificial neural network model for combined heat and power micro gas turbines," Applied Energy, Elsevier, vol. 108(C), pages 137-148.
  • Handle: RePEc:eee:appene:v:108:y:2013:i:c:p:137-148
    DOI: 10.1016/j.apenergy.2013.03.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191300202X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.03.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Palmé, Thomas & Fast, Magnus & Thern, Marcus, 2011. "Gas turbine sensor validation through classification with artificial neural networks," Applied Energy, Elsevier, vol. 88(11), pages 3898-3904.
    2. Fast, M. & Assadi, M. & De, S., 2009. "Development and multi-utility of an ANN model for an industrial gas turbine," Applied Energy, Elsevier, vol. 86(1), pages 9-17, January.
    3. Smrekar, J. & Assadi, M. & Fast, M. & Kuštrin, I. & De, S., 2009. "Development of artificial neural network model for a coal-fired boiler using real plant data," Energy, Elsevier, vol. 34(2), pages 144-152.
    4. De, S. & Kaiadi, M. & Fast, M. & Assadi, M., 2007. "Development of an artificial neural network model for the steam process of a coal biomass cofired combined heat and power (CHP) plant in Sweden," Energy, Elsevier, vol. 32(11), pages 2099-2109.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Min Jae & Kim, Tong Seop & Flores, Robert J. & Brouwer, Jack, 2020. "Neural-network-based optimization for economic dispatch of combined heat and power systems," Applied Energy, Elsevier, vol. 265(C).
    2. Nikpey, H. & Assadi, M. & Breuhaus, P. & Mørkved, P.T., 2014. "Experimental evaluation and ANN modeling of a recuperative micro gas turbine burning mixtures of natural gas and biogas," Applied Energy, Elsevier, vol. 117(C), pages 30-41.
    3. Park, Yeseul & Choi, Minsung & Choi, Gyungmin, 2022. "Fault detection of industrial large-scale gas turbine for fuel distribution characteristics in start-up procedure using artificial neural network method," Energy, Elsevier, vol. 251(C).
    4. Zhang, Jinning & Roumeliotis, Ioannis & Zolotas, Argyrios, 2022. "Model-based fully coupled propulsion-aerodynamics optimization for hybrid electric aircraft energy management strategy," Energy, Elsevier, vol. 245(C).
    5. Homam Nikpey Somehsaraei & Susmita Ghosh & Sayantan Maity & Payel Pramanik & Sudipta De & Mohsen Assadi, 2020. "Automated Data Filtering Approach for ANN Modeling of Distributed Energy Systems: Exploring the Application of Machine Learning," Energies, MDPI, vol. 13(14), pages 1-15, July.
    6. Park, Yeseul & Choi, Minsung & Kim, Kibeom & Li, Xinzhuo & Jung, Chanho & Na, Sangkyung & Choi, Gyungmin, 2020. "Prediction of operating characteristics for industrial gas turbine combustor using an optimized artificial neural network," Energy, Elsevier, vol. 213(C).
    7. Liu, Zuming & Karimi, Iftekhar A., 2020. "Gas turbine performance prediction via machine learning," Energy, Elsevier, vol. 192(C).
    8. Rahmoune, Mohamed Ben & Hafaifa, Ahmed & Kouzou, Abdellah & Chen, XiaoQi & Chaibet, Ahmed, 2021. "Gas turbine monitoring using neural network dynamic nonlinear autoregressive with external exogenous input modelling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 23-47.
    9. Xu, Xiandong & Li, Kang & Qi, Fengyu & Jia, Hongjie & Deng, Jing, 2017. "Identification of microturbine model for long-term dynamic analysis of distribution networks," Applied Energy, Elsevier, vol. 192(C), pages 305-314.
    10. Seijo, Sandra & del Campo, Inés & Echanobe, Javier & García-Sedano, Javier, 2016. "Modeling and multi-objective optimization of a complex CHP process," Applied Energy, Elsevier, vol. 161(C), pages 309-319.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikpey, H. & Assadi, M. & Breuhaus, P. & Mørkved, P.T., 2014. "Experimental evaluation and ANN modeling of a recuperative micro gas turbine burning mixtures of natural gas and biogas," Applied Energy, Elsevier, vol. 117(C), pages 30-41.
    2. Zhou, Dengji & Yao, Qinbo & Wu, Hang & Ma, Shixi & Zhang, Huisheng, 2020. "Fault diagnosis of gas turbine based on partly interpretable convolutional neural networks," Energy, Elsevier, vol. 200(C).
    3. Rahmoune, Mohamed Ben & Hafaifa, Ahmed & Kouzou, Abdellah & Chen, XiaoQi & Chaibet, Ahmed, 2021. "Gas turbine monitoring using neural network dynamic nonlinear autoregressive with external exogenous input modelling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 23-47.
    4. Bahadori, Alireza & Vuthaluru, Hari B., 2010. "A method for estimation of recoverable heat from blowdown systems during steam generation," Energy, Elsevier, vol. 35(8), pages 3501-3507.
    5. Damilola Elizabeth Babatunde & Ambrose Anozie & James Omoleye, 2020. "Artificial Neural Network and its Applications in the Energy Sector An Overview," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 250-264.
    6. Bujak, Janusz, 2009. "Optimal control of energy losses in multi-boiler steam systems," Energy, Elsevier, vol. 34(9), pages 1260-1270.
    7. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Ahmad Hassan Kamal & Muhammad Haider Khan & Awais Ahmad Khan & Hassan Afroze Ahmad & Fahad Ahmed & Noman Hafeez & Rana Muhammad Zawar Sami & Syed Muhammad , 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management. Part 2. Power Generation," Energies, MDPI, vol. 13(21), pages 1-22, October.
    8. Tahan, Mohammadreza & Tsoutsanis, Elias & Muhammad, Masdi & Abdul Karim, Z.A., 2017. "Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review," Applied Energy, Elsevier, vol. 198(C), pages 122-144.
    9. Liu, Zuming & Karimi, Iftekhar A., 2020. "Gas turbine performance prediction via machine learning," Energy, Elsevier, vol. 192(C).
    10. Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
    11. Lv, You & Lv, Xuguang & Fang, Fang & Yang, Tingting & Romero, Carlos E., 2020. "Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants," Energy, Elsevier, vol. 192(C).
    12. Barelli, L. & Bidini, G. & Bonucci, F., 2009. "Development of the regulation mapping of 1Â MW internal combustion engine for diagnostic scopes," Applied Energy, Elsevier, vol. 86(7-8), pages 1087-1104, July.
    13. Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.
    14. Liukkonen, M. & Heikkinen, M. & Hiltunen, T. & Hälikkä, E. & Kuivalainen, R. & Hiltunen, Y., 2011. "Artificial neural networks for analysis of process states in fluidized bed combustion," Energy, Elsevier, vol. 36(1), pages 339-347.
    15. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Syed Muhammad Arafat & Sher Afghan & Ahmad Hassan Kamal & Muhammad Asim & Muhammad Haider Khan & Muhammad Waqas Rafique & Uwe Naumann & Sajawal Gul Niazi &, 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency," Energies, MDPI, vol. 13(21), pages 1-33, October.
    16. Qu, Zhijian & Xu, Juan & Wang, Zixiao & Chi, Rui & Liu, Hanxin, 2021. "Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method," Energy, Elsevier, vol. 227(C).
    17. Fast, M. & Assadi, M. & De, S., 2009. "Development and multi-utility of an ANN model for an industrial gas turbine," Applied Energy, Elsevier, vol. 86(1), pages 9-17, January.
    18. Asif Afzal & Saad Alshahrani & Abdulrahman Alrobaian & Abdulrajak Buradi & Sher Afghan Khan, 2021. "Power Plant Energy Predictions Based on Thermal Factors Using Ridge and Support Vector Regressor Algorithms," Energies, MDPI, vol. 14(21), pages 1-22, November.
    19. Suresh, M.V.J.J. & Reddy, K.S. & Kolar, Ajit Kumar, 2011. "ANN-GA based optimization of a high ash coal-fired supercritical power plant," Applied Energy, Elsevier, vol. 88(12), pages 4867-4873.
    20. Li, Jinxing & Liu, Tianyuan & Zhu, Guangya & Li, Yunzhu & Xie, Yonghui, 2023. "Uncertainty quantification and aerodynamic robust optimization of turbomachinery based on graph learning methods," Energy, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:108:y:2013:i:c:p:137-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.