IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p352-d1316470.html
   My bibliography  Save this article

Predicting Steam Turbine Power Generation: A Comparison of Long Short-Term Memory and Willans Line Model

Author

Listed:
  • Mostafa Pasandideh

    (Ahuora—Centre for Smart Energy Systems, School of Computing and Mathematical Sciences, University of Waikato, Hamilton 3240, New Zealand)

  • Matthew Taylor

    (Ahuora—Centre for Smart Energy Systems, School of Engineering, University of Waikato, Hamilton 3240, New Zealand)

  • Shafiqur Rahman Tito

    (Ahuora—Centre for Smart Energy Systems, School of Computing and Mathematical Sciences, University of Waikato, Hamilton 3240, New Zealand)

  • Martin Atkins

    (Ahuora—Centre for Smart Energy Systems, School of Engineering, University of Waikato, Hamilton 3240, New Zealand)

  • Mark Apperley

    (Ahuora—Centre for Smart Energy Systems, School of Computing and Mathematical Sciences, University of Waikato, Hamilton 3240, New Zealand)

Abstract

This study focuses on using machine learning techniques to accurately predict the generated power in a two-stage back-pressure steam turbine used in the paper production industry. In order to accurately predict power production by a steam turbine, it is crucial to consider the time dependence of the input data. For this purpose, the long-short-term memory (LSTM) approach is employed. Correlation analysis is performed to select parameters with a correlation coefficient greater than 0.8. Initially, nine inputs are considered, and the study showcases the superior performance of the LSTM method, with an accuracy rate of 0.47. Further refinement is conducted by reducing the inputs to four based on correlation analysis, resulting in an improved accuracy rate of 0.39. The comparison between the LSTM method and the Willans line model evaluates the efficacy of the former in predicting production power. The root mean square error (RMSE) evaluation parameter is used to assess the accuracy of the prediction algorithm used for the generator’s production power. By highlighting the importance of selecting appropriate machine learning techniques, high-quality input data, and utilising correlation analysis for input refinement, this work demonstrates a valuable approach to accurately estimating and predicting power production in the energy industry.

Suggested Citation

  • Mostafa Pasandideh & Matthew Taylor & Shafiqur Rahman Tito & Martin Atkins & Mark Apperley, 2024. "Predicting Steam Turbine Power Generation: A Comparison of Long Short-Term Memory and Willans Line Model," Energies, MDPI, vol. 17(2), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:352-:d:1316470
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/352/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/352/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nikpey, H. & Assadi, M. & Breuhaus, P., 2013. "Development of an optimized artificial neural network model for combined heat and power micro gas turbines," Applied Energy, Elsevier, vol. 108(C), pages 137-148.
    2. Zhang, Jiaan & Liu, Dong & Li, Zhijun & Han, Xu & Liu, Hui & Dong, Cun & Wang, Junyan & Liu, Chenyu & Xia, Yunpeng, 2021. "Power prediction of a wind farm cluster based on spatiotemporal correlations," Applied Energy, Elsevier, vol. 302(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiaan Zhang & Chenyu Liu & Leijiao Ge, 2022. "Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN," Energies, MDPI, vol. 15(7), pages 1-25, April.
    2. Yang, Mao & Guo, Yunfeng & Huang, Tao & Fan, Fulin & Ma, Chenglian & Fang, Guozhong, 2024. "Wind farm cluster power prediction based on graph deviation attention network with learnable graph structure and dynamic error correction during load peak and valley periods," Energy, Elsevier, vol. 312(C).
    3. Lv, Yunlong & Hu, Qin & Xu, Hang & Lin, Huiyao & Wu, Yufan, 2024. "An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model," Energy, Elsevier, vol. 293(C).
    4. Guanghui Che & Daocheng Zhou & Rui Wang & Lei Zhou & Hongfu Zhang & Sheng Yu, 2024. "Wind Energy Assessment in Forested Regions Based on the Combination of WRF and LSTM-Attention Models," Sustainability, MDPI, vol. 16(2), pages 1-17, January.
    5. Qu, Zhijian & Hou, Xinxing & Li, Jian & Hu, Wenbo, 2024. "Short-term wind farm cluster power prediction based on dual feature extraction and quadratic decomposition aggregation," Energy, Elsevier, vol. 290(C).
    6. Liu, Ling & Wang, Jujie & Li, Jianping & Wei, Lu, 2023. "An online transfer learning model for wind turbine power prediction based on spatial feature construction and system-wide update," Applied Energy, Elsevier, vol. 340(C).
    7. Wen, Songkang & Li, Yanting & Su, Yan, 2022. "A new hybrid model for power forecasting of a wind farm using spatial–temporal correlations," Renewable Energy, Elsevier, vol. 198(C), pages 155-168.
    8. Kim, Min Jae & Kim, Tong Seop & Flores, Robert J. & Brouwer, Jack, 2020. "Neural-network-based optimization for economic dispatch of combined heat and power systems," Applied Energy, Elsevier, vol. 265(C).
    9. Nikpey, H. & Assadi, M. & Breuhaus, P. & Mørkved, P.T., 2014. "Experimental evaluation and ANN modeling of a recuperative micro gas turbine burning mixtures of natural gas and biogas," Applied Energy, Elsevier, vol. 117(C), pages 30-41.
    10. Norbert Chamier-Gliszczynski & Joanna Alicja Dyczkowska & Waldemar Woźniak & Marcin Olkiewicz & Roman Stryjski, 2024. "The Determinant of Time in the Logistical Process of Wind Farm Planning," Energies, MDPI, vol. 17(6), pages 1-18, March.
    11. Park, Yeseul & Choi, Minsung & Choi, Gyungmin, 2022. "Fault detection of industrial large-scale gas turbine for fuel distribution characteristics in start-up procedure using artificial neural network method," Energy, Elsevier, vol. 251(C).
    12. Xiaoxun, Zhu & Zixu, Xu & Yu, Wang & Xiaoxia, Gao & Xinyu, Hang & Hongkun, Lu & Ruizhang, Liu & Yao, Chen & Huaxin, Liu, 2023. "Research on wind speed behavior prediction method based on multi-feature and multi-scale integrated learning," Energy, Elsevier, vol. 263(PA).
    13. Yang, Mao & Guo, Yunfeng & Fan, Fulin & Huang, Tao, 2024. "Two-stage correction prediction of wind power based on numerical weather prediction wind speed superposition correction and improved clustering," Energy, Elsevier, vol. 302(C).
    14. Nathan Oaks Farrar & Mohd Hasan Ali & Dipankar Dasgupta, 2023. "Artificial Intelligence and Machine Learning in Grid Connected Wind Turbine Control Systems: A Comprehensive Review," Energies, MDPI, vol. 16(3), pages 1-25, February.
    15. Zhang, Jinning & Roumeliotis, Ioannis & Zolotas, Argyrios, 2022. "Model-based fully coupled propulsion-aerodynamics optimization for hybrid electric aircraft energy management strategy," Energy, Elsevier, vol. 245(C).
    16. Homam Nikpey Somehsaraei & Susmita Ghosh & Sayantan Maity & Payel Pramanik & Sudipta De & Mohsen Assadi, 2020. "Automated Data Filtering Approach for ANN Modeling of Distributed Energy Systems: Exploring the Application of Machine Learning," Energies, MDPI, vol. 13(14), pages 1-15, July.
    17. Qiu, Lihong & Ma, Wentao & Feng, Xiaoyang & Dai, Jiahui & Dong, Yuzhuo & Duan, Jiandong & Chen, Badong, 2024. "A hybrid PV cluster power prediction model using BLS with GMCC and error correction via RVM considering an improved statistical upscaling technique," Applied Energy, Elsevier, vol. 359(C).
    18. Rahmoune, Mohamed Ben & Hafaifa, Ahmed & Kouzou, Abdellah & Chen, XiaoQi & Chaibet, Ahmed, 2021. "Gas turbine monitoring using neural network dynamic nonlinear autoregressive with external exogenous input modelling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 23-47.
    19. Seijo, Sandra & del Campo, Inés & Echanobe, Javier & García-Sedano, Javier, 2016. "Modeling and multi-objective optimization of a complex CHP process," Applied Energy, Elsevier, vol. 161(C), pages 309-319.
    20. Jie Zhu & Buxiang Zhou & Yiwei Qiu & Tianlei Zang & Yi Zhou & Shi Chen & Ningyi Dai & Huan Luo, 2023. "Survey on Modeling of Temporally and Spatially Interdependent Uncertainties in Renewable Power Systems," Energies, MDPI, vol. 16(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:352-:d:1316470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.