IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v100y2012icp87-92.html
   My bibliography  Save this article

An investigation of coated aluminium bipolar plates for PEMFC

Author

Listed:
  • Lin, Chien-Hung
  • Tsai, Sung-Ying

Abstract

The performance of Al-alloy bipolar plates for the PEMFC (proton exchange membrane fuel cell) system is investigated in this paper. The metallic bipolar plates are modified with a Ni–P coating. The performance of the Al-alloy bipolar plates is evaluated by the coating structure, corrosion resistance, contact angle and single cell performance. The results indicate that the coated aluminium bipolar plates demonstrate hydrophobic and anti-corrosive properties. The hydrophobic property increases the contact angle on the surface from 46.08° to 80.51°. Meanwhile, the corrosion rate of the Ni–P coating can be over 1 order of magnitude lower than that of the substrate. Hence, the substrate with the coating maintains superior performance under the long term test. The present study proves that both the hydrophobicity and corrosion resistance significantly affect the metallic bipolar plate.

Suggested Citation

  • Lin, Chien-Hung & Tsai, Sung-Ying, 2012. "An investigation of coated aluminium bipolar plates for PEMFC," Applied Energy, Elsevier, vol. 100(C), pages 87-92.
  • Handle: RePEc:eee:appene:v:100:y:2012:i:c:p:87-92
    DOI: 10.1016/j.apenergy.2012.06.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912004904
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.06.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    2. Alaefour, Ibrahim & Karimi, G. & Jiao, Kui & Li, X., 2012. "Measurement of current distribution in a proton exchange membrane fuel cell with various flow arrangements – A parametric study," Applied Energy, Elsevier, vol. 93(C), pages 80-89.
    3. Yuan, Wei & Tang, Yong & Yang, Xiaojun & Wan, Zhenping, 2012. "Porous metal materials for polymer electrolyte membrane fuel cells – A review," Applied Energy, Elsevier, vol. 94(C), pages 309-329.
    4. Salameh, Mamdouh G., 2003. "Can renewable and unconventional energy sources bridge the global energy gap in the 21st century?," Applied Energy, Elsevier, vol. 75(1-2), pages 33-42, May.
    5. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    6. Khan, M.J. & Iqbal, M.T., 2009. "Analysis of a small wind-hydrogen stand-alone hybrid energy system," Applied Energy, Elsevier, vol. 86(11), pages 2429-2442, November.
    7. Barelli, L. & Bidini, G. & Gallorini, F. & Ottaviano, A., 2012. "Dynamic analysis of PEMFC-based CHP systems for domestic application," Applied Energy, Elsevier, vol. 91(1), pages 13-28.
    8. Nishimura, Akira & Shibuya, Kenichi & Morimoto, Atsushi & Tanaka, Shigeki & Hirota, Masafumi & Nakamura, Yoshihiro & Kojima, Masashi & Narita, Masahiko & Hu, Eric, 2012. "Dominant factor and mechanism of coupling phenomena in single cell of polymer electrolyte fuel cell," Applied Energy, Elsevier, vol. 90(1), pages 73-79.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zenan Shen & Shaoquan Liu & Wei Zhu & Daoyuan Ren & Qiang Xu & Yu Feng, 2024. "A Review on Key Technologies and Developments of Hydrogen Fuel Cell Multi-Rotor Drones," Energies, MDPI, vol. 17(16), pages 1-36, August.
    2. Lin, Chen & Yan, Xiaohui & Wei, Guanghua & Ke, Changchun & Shen, Shuiyun & Zhang, Junliang, 2019. "Optimization of configurations and cathode operating parameters on liquid-cooled proton exchange membrane fuel cell stacks by orthogonal method," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Pei, Pucheng & Wu, Ziyao & Li, Yuehua & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Improved methods to measure hydrogen crossover current in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 215(C), pages 338-347.
    4. Han, Hun Sik & Cho, Changhwan & Kim, Seo Young & Hyun, Jae Min, 2013. "Performance evaluation of a polymer electrolyte membrane fuel cell system for powering portable freezer," Applied Energy, Elsevier, vol. 105(C), pages 125-137.
    5. Chen, Chen-Yu & Su, Sheng-Chun, 2018. "Effects of assembly torque on a proton exchange membrane fuel cell with stamped metallic bipolar plates," Energy, Elsevier, vol. 159(C), pages 440-447.
    6. Yan, Wei-Mon & Lin, Jian-Cheng & Chen, Chen-Yu & Amani, Mohammad, 2023. "Performance evaluation of TiN/Ti coatings on the aluminum alloy bipolar plates for PEM fuel cells," Renewable Energy, Elsevier, vol. 216(C).
    7. Lin, Chien-Hung, 2013. "Surface roughness effect on the metallic bipolar plates of a proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 104(C), pages 898-904.
    8. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Chien-Hung, 2013. "Surface roughness effect on the metallic bipolar plates of a proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 104(C), pages 898-904.
    2. Chen, Huicui & Song, Zhen & Zhao, Xin & Zhang, Tong & Pei, Pucheng & Liang, Chen, 2018. "A review of durability test protocols of the proton exchange membrane fuel cells for vehicle," Applied Energy, Elsevier, vol. 224(C), pages 289-299.
    3. Jiao, Kui & Bachman, John & Zhou, Yibo & Park, Jae Wan, 2014. "Effect of induced cross flow on flow pattern and performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 115(C), pages 75-82.
    4. Teresa J. Leo & Miguel A. Raso & Emilio Navarro & Eleuterio Mora, 2013. "Long Term Performance Study of a Direct Methanol Fuel Cell Fed with Alcohol Blends," Energies, MDPI, vol. 6(1), pages 1-12, January.
    5. Wan, Zhongmin & Liu, Jing & Luo, Zhiping & Tu, Zhengkai & Liu, Zhichun & Liu, Wei, 2013. "Evaluation of self-water-removal in a dead-ended proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 104(C), pages 751-757.
    6. Bao, Zhiming & Niu, Zhiqiang & Jiao, Kui, 2020. "Gas distribution and droplet removal of metal foam flow field for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 280(C).
    7. Maghanki, Maryam Mohammadi & Ghobadian, Barat & Najafi, Gholamhassan & Galogah, Reza Janzadeh, 2013. "Micro combined heat and power (MCHP) technologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 510-524.
    8. Zuliani, Nicola & Taccani, Rodolfo, 2012. "Microcogeneration system based on HTPEM fuel cell fueled with natural gas: Performance analysis," Applied Energy, Elsevier, vol. 97(C), pages 802-808.
    9. Asensio, F.J. & San Martín, J.I. & Zamora, I. & Oñederra, O., 2018. "Model for optimal management of the cooling system of a fuel cell-based combined heat and power system for developing optimization control strategies," Applied Energy, Elsevier, vol. 211(C), pages 413-430.
    10. Awin, Yussef & Dukhan, Nihad, 2019. "Experimental performance assessment of metal-foam flow fields for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    11. Huo, Sen & Cooper, Nathanial James & Smith, Travis Lee & Park, Jae Wan & Jiao, Kui, 2017. "Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor," Applied Energy, Elsevier, vol. 203(C), pages 101-114.
    12. Andrzej Wilk & Daniel Węcel, 2020. "Measurements Based Analysis of the Proton Exchange Membrane Fuel Cell Operation in Transient State and Power of Own Needs," Energies, MDPI, vol. 13(2), pages 1-19, January.
    13. G. García Clúa, José & Mantz, Ricardo J. & De Battista, Hernán, 2011. "Evaluation of hydrogen production capabilities of a grid-assisted wind-H2 system," Applied Energy, Elsevier, vol. 88(5), pages 1857-1863, May.
    14. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    15. Vasile, Nicolò S. & Doherty, Ronan & Monteverde Videla, Alessandro H.A. & Specchia, Stefania, 2016. "3D multi-physics modeling of a gas diffusion electrode for oxygen reduction reaction for electrochemical energy conversion in PEM fuel cells," Applied Energy, Elsevier, vol. 175(C), pages 435-450.
    16. Calabriso, Andrea & Borello, Domenico & Romano, Giovanni Paolo & Cedola, Luca & Del Zotto, Luca & Santori, Simone Giovanni, 2017. "Bubbly flow mapping in the anode channel of a direct methanol fuel cell via PIV investigation," Applied Energy, Elsevier, vol. 185(P2), pages 1245-1255.
    17. Chen, Wen-Lih & Huang, Chao-Wei & Li, Yueh-Heng & Kao, Chien-Chun & Cong, Huynh Thanh, 2020. "Biosyngas-fueled platinum reactor applied in micro combined heat and power system with a thermophotovoltaic array and stirling engine," Energy, Elsevier, vol. 194(C).
    18. Sankar, K. & Thakre, Niraj & Singh, Sumit Mohan & Jana, Amiya K., 2017. "Sliding mode observer based nonlinear control of a PEMFC integrated with a methanol reformer," Energy, Elsevier, vol. 139(C), pages 1126-1143.
    19. Kong, Im Mo & Jung, Aeri & Kim, Min Soo, 2016. "Investigations on the double gas diffusion backing layer for performance improvement of self-humidified proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 176(C), pages 149-156.
    20. Han, Hun Sik & Cho, Changhwan & Kim, Seo Young & Hyun, Jae Min, 2013. "Performance evaluation of a polymer electrolyte membrane fuel cell system for powering portable freezer," Applied Energy, Elsevier, vol. 105(C), pages 125-137.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:100:y:2012:i:c:p:87-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.