IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v448y2023ics009630032300108x.html
   My bibliography  Save this article

New results on H∞ control for interval type-2 fuzzy singularly perturbed systems with fading channel: The weighted try-once-discard protocol case

Author

Listed:
  • Hu, Yue
  • Cai, Chenxiao
  • Lee, SeungHoon
  • Lee, YongGwon
  • Kwon, Oh-Min

Abstract

This article deals with the interval type-2 (IT2) fuzzy model-based H∞ control problem for networked singularly perturbed systems (SPSs) under fading channel. To prevent data collision, a weighted try-once-discard (WTOD) communication scheme is adopted to adjust the communication sequence of sensor nodes. Based on this transmission strategy, only one sensor with more considerable difference is allowed to be transmitted at each time instant. On the other hand, a time-varying stochastic process model is introduced to describe the behavior of the fading channels in unreliable networks. Based on fading state signal and known bounds, the imperfectly matched membership functions (MFs) are reconstructed in the controller. Accordingly, under the effect of fading channels and WTOD protocol, a new IT2 fuzzy controller is constructed for the networked IT2 fuzzy SPSs. Meanwhile, by constructing a singular perturbation parameter (SPP) dependent Lyapunov function, sufficient conditions are established to guarantee the mean square stability of networked IT2 fuzzy SPSs, and the numerical stiffness issue is avoided. Finally, the practicability of the proposed methods is proved through a tunnel diode circuit simulation.

Suggested Citation

  • Hu, Yue & Cai, Chenxiao & Lee, SeungHoon & Lee, YongGwon & Kwon, Oh-Min, 2023. "New results on H∞ control for interval type-2 fuzzy singularly perturbed systems with fading channel: The weighted try-once-discard protocol case," Applied Mathematics and Computation, Elsevier, vol. 448(C).
  • Handle: RePEc:eee:apmaco:v:448:y:2023:i:c:s009630032300108x
    DOI: 10.1016/j.amc.2023.127939
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630032300108X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.127939?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Jia-Sheng & Chang, Xiao-Heng, 2020. "H∞ controller design of networked control systems with a new quantization structure," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    2. Kavikumar, R. & Kwon, O.M. & Sakthivel, R. & Lee, S.H. & Choi, S.G. & Priyanka, S., 2022. "Sliding mode control for IT2 fuzzy semi-Markov systems with faults and disturbances," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Qiongwen & Cheng, Jun & Liao, Daixi & Cao, Jinde & Alsaadi, Fawaz E, 2023. "Improved Dynamic Event-Triggered Control for Nonlinear Systems with Fading Channels," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    2. Rajchakit, G. & Sriraman, R. & Vignesh, P. & Lim, C.P., 2021. "Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    3. Hejun Yao & Fangzheng Gao, 2022. "Design of Observer and Dynamic Output Feedback Control for Fuzzy Networked Systems," Mathematics, MDPI, vol. 11(1), pages 1-13, December.
    4. Yang, Chengyu & Li, Fei & Kong, Qingkai & Chen, Xiangyong & Wang, Jian, 2021. "Asynchronous fault-tolerant control for stochastic jumping singularly perturbed systems: An H∞ sliding mode control scheme," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    5. Li, Ming-Yang & Xie, Wen-Bo & Wang, Yu-Long & Hu, Xin, 2022. "Prescribed performance trajectory tracking fault-tolerant control for dynamic positioning vessels under velocity constraints," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    6. Chen, Siya & Feng, Jianwen & Wang, Jingyi & Zhao, Yi, 2020. "Almost sure exponential synchronization of drive-response stochastic memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    7. Shanmugam, Lakshmanan & Joo, Young Hoon, 2023. "Adaptive neural networks-based integral sliding mode control for T-S fuzzy model of delayed nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    8. Xu, Xiaozeng & Zhang, Hongbin & Zheng, Qunxian & Chen, Wei, 2022. "Global exponential stability and H∞ control of limit cycle for switched affine systems under time-dependent switching signal," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    9. Gu, Yang & Shen, Mouquan & Ren, Yuesheng & Liu, Hongxia, 2020. "H∞ finite-time control of unknown uncertain systems with actuator failure," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    10. Li, Xin & Cheng, Kaijie & Zhu, Liangkuan & Wei, Guoliang, 2023. "Outlier-resistant interval observer design for multirate time-delayed systems under the adaptive event-triggered protocols," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    11. Vijayakumar, M. & Sakthivel, R. & Mohammadzadeh, Ardashir & Karthick, S.A. & Marshal Anthoni, S., 2021. "Proportional integral observer based tracking control design for Markov jump systems," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    12. Suriguga, & Kao, Yonggui & Shao, Chuntao & Chen, Xiangyong, 2021. "Stability of high-order delayed Markovian jumping reaction-diffusion HNNs with uncertain transition rates," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    13. Zhang, Huasheng & Zhuang, Guangming & Sun, Wei & Li, Yongmin & Lu, Junwei, 2020. "pth moment asymptotic interval stability and stabilization of linear stochastic systems via generalized H-representation," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    14. Wang, Xingxing & Ma, Yuechao, 2023. "Adaptive non-fragile sliding mode control for switched semi-Markov jump system with time-delay and attack via reduced-order method," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    15. Liu, Cheng-Qian & Li, Xiao-Jian & Long, Yue & Sun, Jie, 2020. "Output feedback secure control for cyber-physical systems against sparse sensor attacks," Applied Mathematics and Computation, Elsevier, vol. 384(C).
    16. Li, Yuanen & Zhang, Huasheng & Zhang, Tingting & Geng, Han, 2023. "Interval stability/stabilization and H∞ feedback control for linear impulsive stochastic systems," Applied Mathematics and Computation, Elsevier, vol. 437(C).
    17. Yan, Shen & Yang, Fan & Gu, Zhou, 2020. "Derivative-based event-triggered control for networked systems with quantization," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    18. Mayank Kumar Gautam & Avadh Pati & Sunil Kumar Mishra & Bhargav Appasani & Ersan Kabalci & Nicu Bizon & Phatiphat Thounthong, 2021. "A Comprehensive Review of the Evolution of Networked Control System Technology and Its Future Potentials," Sustainability, MDPI, vol. 13(5), pages 1-39, March.
    19. He, Miao & Rong, Taotao & Li, Junmin & He, Chao, 2021. "Adaptive dynamic surface full state constraints control for stochastic Markov jump systems based on event-triggered strategy," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    20. Zhang, Qiliang & Feng, Jun-e & Wang, Biao & Wang, Peihe, 2020. "Event-triggered mechanism of designing set stabilization state feedback controller for switched Boolean networks," Applied Mathematics and Computation, Elsevier, vol. 383(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:448:y:2023:i:c:s009630032300108x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.