IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v383y2020ics0096300320303234.html
   My bibliography  Save this article

Derivative-based event-triggered control for networked systems with quantization

Author

Listed:
  • Yan, Shen
  • Yang, Fan
  • Gu, Zhou

Abstract

This paper is devoted to the problem of derivative-based event-triggered control for linear networked systems with quantization. A novel type of event-triggered mechanism (ETM) is presented via involving a derivative term related with the Lyapunov functional. Inspired by this introduced derivative term, we call the proposed ETM as derivative-based event-triggered mechanism (DETM). In the conventional ETM, the triggering condition is always needed to be less than zero to ensure the system stability, while it is not required under the proposed DETM. Then, with the help of linear matrix inequality (LMI) technique, sufficient conditions for co-designing the triggering matrix and an event-triggered controller are derived. The corresponding results are also applied to event-triggered control systems with time-varying transmission delay. The validity of the developed approach is illustrated by some simulation examples.

Suggested Citation

  • Yan, Shen & Yang, Fan & Gu, Zhou, 2020. "Derivative-based event-triggered control for networked systems with quantization," Applied Mathematics and Computation, Elsevier, vol. 383(C).
  • Handle: RePEc:eee:apmaco:v:383:y:2020:i:c:s0096300320303234
    DOI: 10.1016/j.amc.2020.125359
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320303234
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125359?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yao, Xiuming & Lian, Yue & Park, Ju H., 2019. "Disturbance-observer-based event-triggered control for semi-Markovian jump nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    2. Xiao, Xiaoqing & Park, Ju H. & Zhou, Lei, 2018. "Event-triggered control of discrete-time switched linear systems with packet losses," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 344-352.
    3. Song, Jia-Sheng & Chang, Xiao-Heng, 2020. "H∞ controller design of networked control systems with a new quantization structure," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    4. Xiong, Jun & Chang, Xiao-Heng & Yi, Xiaojian, 2018. "Design of robust nonfragile fault detection filter for uncertain dynamic systems with quantization," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 774-788.
    5. Ye, Dan & Li, Xiehuan, 2020. "Event-triggered fault detection for continuous-time networked polynomial-fuzzy-model-based systems," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shao, Xingling & Yue, Xiaohui & Li, Jie, 2021. "Event-triggered robust control for quadrotors with preassigned time performance constraints," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    2. Tan, Lihua & Li, Chuandong & Huang, Junjian & Huang, Tingwen, 2021. "Output feedback leader-following consensus for nonlinear stochastic multiagent systems: The event-triggered method," Applied Mathematics and Computation, Elsevier, vol. 395(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Qiliang & Feng, Jun-e & Wang, Biao & Wang, Peihe, 2020. "Event-triggered mechanism of designing set stabilization state feedback controller for switched Boolean networks," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    2. Xu, Xiaozeng & Zhang, Hongbin & Zheng, Qunxian & Chen, Wei, 2022. "Global exponential stability and H∞ control of limit cycle for switched affine systems under time-dependent switching signal," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    3. Gu, Yang & Shen, Mouquan & Ren, Yuesheng & Liu, Hongxia, 2020. "H∞ finite-time control of unknown uncertain systems with actuator failure," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    4. Zheng, Qunxian & Xu, Shengyuan & Zhang, Zhengqiang, 2020. "Nonfragile H∞ observer design for uncertain nonlinear switched systems with quantization," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    5. Suriguga, & Kao, Yonggui & Shao, Chuntao & Chen, Xiangyong, 2021. "Stability of high-order delayed Markovian jumping reaction-diffusion HNNs with uncertain transition rates," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    6. Liu, Cheng-Qian & Li, Xiao-Jian & Long, Yue & Sun, Jie, 2020. "Output feedback secure control for cyber-physical systems against sparse sensor attacks," Applied Mathematics and Computation, Elsevier, vol. 384(C).
    7. Yu, Peng & Ma, Yuechao, 2020. "Observer-based asynchronous control for Markov jump systems," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    8. Wang, Yingchun & Zheng, Yu & Xie, Xiangpeng & Yang, Jun, 2020. "An improved reduction method based networked control against false data injection attacks and stochastic input delay," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    9. Li, Ping & Song, Zhibao & Wang, Zhen & Liu, Wenhui, 2020. "Fixed-time consensus for disturbed multiple Euler-Lagrange systems with connectivity preservation and quantized input," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    10. Du, Dongsheng & Cocquempot, Vincent & Jiang, Bin, 2019. "Robust fault estimation observer design for switched systems with unknown input," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 70-83.
    11. Sakthivel, Rathinasamy & Suveetha, V.T. & Nithya, Venkatesh & Sakthivel, Ramalingam, 2020. "Finite-time fault detection filter design for complex systems with multiple stochastic communication and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    12. Aravinth, N. & Satheesh, T. & Sakthivel, R. & Ran, G. & Mohammadzadeh, A., 2023. "Input-output finite-time stabilization of periodic piecewise systems with multiple disturbances," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    13. Guo, Yaxiao & Li, Junmin & Duan, Ruirui, 2021. "Extended dissipativity-based control for persistent dwell-time switched singularly perturbed systems and its application to electronic circuits," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    14. Rajchakit, G. & Sriraman, R. & Vignesh, P. & Lim, C.P., 2021. "Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    15. Lü, Shao-Yu & Jin, Xiao-Zheng & Wu, Xiao-Ming & Ding, Li-Jian & Chi, Jing, 2022. "Robust adaptive event-triggered fault-tolerant control for time-varying systems against perturbations and faulty actuators," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    16. Hu, Yue & Cai, Chenxiao & Lee, SeungHoon & Lee, YongGwon & Kwon, Oh-Min, 2023. "New results on H∞ control for interval type-2 fuzzy singularly perturbed systems with fading channel: The weighted try-once-discard protocol case," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    17. Yan, Yan & Wu, Libing & Yan, Weijun & Hu, Yuhan & Zhao, Nannan & Chen, Ming, 2022. "Finite-time event-triggered fault-tolerant control for a family of pure-feedback systems," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    18. Hejun Yao & Fangzheng Gao, 2022. "Design of Observer and Dynamic Output Feedback Control for Fuzzy Networked Systems," Mathematics, MDPI, vol. 11(1), pages 1-13, December.
    19. Hu, Jun & Li, Jiaxing & Kao, Yonggui & Chen, Dongyan, 2022. "Optimal distributed filtering for nonlinear saturated systems with random access protocol and missing measurements: The uncertain probabilities case," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    20. Yang, Chengyu & Li, Fei & Kong, Qingkai & Chen, Xiangyong & Wang, Jian, 2021. "Asynchronous fault-tolerant control for stochastic jumping singularly perturbed systems: An H∞ sliding mode control scheme," Applied Mathematics and Computation, Elsevier, vol. 389(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:383:y:2020:i:c:s0096300320303234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.