IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v431y2022ics0096300322004222.html
   My bibliography  Save this article

Prescribed performance trajectory tracking fault-tolerant control for dynamic positioning vessels under velocity constraints

Author

Listed:
  • Li, Ming-Yang
  • Xie, Wen-Bo
  • Wang, Yu-Long
  • Hu, Xin

Abstract

This paper investigates the prescribed performance trajectory tracking control problem for dynamic positioning vessels in the presence of velocity constraints and thruster faults. By using a structurally simple error transformation, the issue of guaranteeing prescribed transient and steady state tracking performance is converted to a general state-constraint problem, which together with the velocity constraints form a trajectory tracking control problem with full-state constraint. Time-invariant and time-varying asymmetric barrier Lyapunov functions are adopted to realize the constraint of trajectory-level and velocity-level errors. Within this setting, neural network and adaptive techniques are incorporated to construct a fault-tolerant trajectory tracking controller, which can not only estimate thruster faults, but also provide better robustness against model uncertainties and external disturbance. Finally, tracking control task for dynamic positioning systems is carried out to illustrate the merits of the proposed method.

Suggested Citation

  • Li, Ming-Yang & Xie, Wen-Bo & Wang, Yu-Long & Hu, Xin, 2022. "Prescribed performance trajectory tracking fault-tolerant control for dynamic positioning vessels under velocity constraints," Applied Mathematics and Computation, Elsevier, vol. 431(C).
  • Handle: RePEc:eee:apmaco:v:431:y:2022:i:c:s0096300322004222
    DOI: 10.1016/j.amc.2022.127348
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322004222
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127348?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Xiao-Heng & Li, Zhi-Min & Xiong, Jun & Wang, Yi-Ming, 2017. "LMI approaches to input and output quantized feedback stabilization of linear systems," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 162-175.
    2. Yin, Zeyang & Luo, Jianjun & Wei, Caisheng, 2019. "Quasi fixed-time fault-tolerant control for nonlinear mechanical systems with enhanced performance," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 157-173.
    3. Hao, Li-Ying & Zhang, Yu-Qing & Li, Hui, 2021. "Fault-tolerant control via integral sliding mode output feedback for unmanned marine vehicles," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    4. Song, Jia-Sheng & Chang, Xiao-Heng, 2020. "H∞ controller design of networked control systems with a new quantization structure," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yuanen & Zhang, Huasheng & Zhang, Tingting & Geng, Han, 2023. "Interval stability/stabilization and H∞ feedback control for linear impulsive stochastic systems," Applied Mathematics and Computation, Elsevier, vol. 437(C).
    2. Dong, Sheng & Shen, Zhipeng & Zhou, Lu & Yu, Haomiao & Zhu, Guibing, 2023. "Nonlinear feedback-based event-triggered output-feedback control for marine surface vehicles under deferred output constraints," Applied Mathematics and Computation, Elsevier, vol. 454(C).
    3. Karthick, S.A. & Sakthivel, R. & Ma, Y.K. & Mohanapriya, S. & Leelamani, A., 2019. "Disturbance rejection of fractional-order T-S fuzzy neural networks based on quantized dynamic output feedback controller," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 846-857.
    4. Zhang, Juan & Dai, Jing & Zhang, Huaguang & Sun, Shaoxin, 2021. "Cooperative output regulation of heterogeneous linear multi-agent systems based on the event-triggered distributed control under switching topologies," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    5. Rajchakit, G. & Sriraman, R. & Vignesh, P. & Lim, C.P., 2021. "Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    6. Hu, Yue & Cai, Chenxiao & Lee, SeungHoon & Lee, YongGwon & Kwon, Oh-Min, 2023. "New results on H∞ control for interval type-2 fuzzy singularly perturbed systems with fading channel: The weighted try-once-discard protocol case," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    7. Ying Yang & Bin Wang & Yuqiang Tian & Peng Chen, 2020. "Fractional-Order Finite-Time, Fault-Tolerant Control of Nonlinear Hydraulic-Turbine-Governing Systems with an Actuator Fault," Energies, MDPI, vol. 13(15), pages 1-20, July.
    8. Hejun Yao & Fangzheng Gao, 2022. "Design of Observer and Dynamic Output Feedback Control for Fuzzy Networked Systems," Mathematics, MDPI, vol. 11(1), pages 1-13, December.
    9. Yang, Chengyu & Li, Fei & Kong, Qingkai & Chen, Xiangyong & Wang, Jian, 2021. "Asynchronous fault-tolerant control for stochastic jumping singularly perturbed systems: An H∞ sliding mode control scheme," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    10. Chen, Siya & Feng, Jianwen & Wang, Jingyi & Zhao, Yi, 2020. "Almost sure exponential synchronization of drive-response stochastic memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    11. Xu, Xiaozeng & Zhang, Hongbin & Zheng, Qunxian & Chen, Wei, 2022. "Global exponential stability and H∞ control of limit cycle for switched affine systems under time-dependent switching signal," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    12. Gu, Yang & Shen, Mouquan & Ren, Yuesheng & Liu, Hongxia, 2020. "H∞ finite-time control of unknown uncertain systems with actuator failure," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    13. Li, Xin & Cheng, Kaijie & Zhu, Liangkuan & Wei, Guoliang, 2023. "Outlier-resistant interval observer design for multirate time-delayed systems under the adaptive event-triggered protocols," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    14. Sakthivel, R. & Joby, Maya & Wang, Chao & Kaviarasan, B., 2018. "Finite-time fault-tolerant control of neutral systems against actuator saturation and nonlinear actuator faults," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 425-436.
    15. Yoo, Sung Jin & Park, Bong Seok, 2021. "Quantized feedback control strategy for tracking performance guarantee of nonholonomic mobile robots with uncertain nonlinear dynamics," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    16. Vijayakumar, M. & Sakthivel, R. & Mohammadzadeh, Ardashir & Karthick, S.A. & Marshal Anthoni, S., 2021. "Proportional integral observer based tracking control design for Markov jump systems," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    17. Suriguga, & Kao, Yonggui & Shao, Chuntao & Chen, Xiangyong, 2021. "Stability of high-order delayed Markovian jumping reaction-diffusion HNNs with uncertain transition rates," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    18. Zhang, Huasheng & Zhuang, Guangming & Sun, Wei & Li, Yongmin & Lu, Junwei, 2020. "pth moment asymptotic interval stability and stabilization of linear stochastic systems via generalized H-representation," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    19. Xiong, Jun & Chang, Xiao-Heng & Yi, Xiaojian, 2018. "Design of robust nonfragile fault detection filter for uncertain dynamic systems with quantization," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 774-788.
    20. Liu, Cheng-Qian & Li, Xiao-Jian & Long, Yue & Sun, Jie, 2020. "Output feedback secure control for cyber-physical systems against sparse sensor attacks," Applied Mathematics and Computation, Elsevier, vol. 384(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:431:y:2022:i:c:s0096300322004222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.