IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v445y2023ics0096300323000346.html
   My bibliography  Save this article

Event-triggered distributed online convex optimization with delayed bandit feedback

Author

Listed:
  • Xiong, Menghui
  • Zhang, Baoyong
  • Yuan, Deming
  • Zhang, Yijun
  • Chen, Jun

Abstract

This paper is concerned with an online distributed convex-constrained optimization problem over a multi-agent network, where the limited network bandwidth and potential feedback delay caused by network communication are considered. To cope with the limited network bandwidth, an event-triggered communication scheme is introduced in information exchange. Then, based on the delayed (i.e., single-point and two-point) bandit feedback, two event-triggered distributed online convex optimization algorithms are developed by utilizing the Bregman divergence in the projection step. Meanwhile, the convergence of the two developed algorithms is analyzed according to the provided static regret bounds achieved by the algorithm. The obtained results show that a sublinear static regret with respect to the time horizon T can be ensured if the triggering threshold gradually approaches zero. In this case, the corresponding order of the regret bounds is also determined by choosing suitable triggering thresholds. Finally, a distributed online regularized linear regression problem is provided as an example to illustrate the effectiveness of the proposed two algorithms.

Suggested Citation

  • Xiong, Menghui & Zhang, Baoyong & Yuan, Deming & Zhang, Yijun & Chen, Jun, 2023. "Event-triggered distributed online convex optimization with delayed bandit feedback," Applied Mathematics and Computation, Elsevier, vol. 445(C).
  • Handle: RePEc:eee:apmaco:v:445:y:2023:i:c:s0096300323000346
    DOI: 10.1016/j.amc.2023.127865
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323000346
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.127865?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Qi-Xin & Chang, Xiao-Heng, 2022. "Resilient filter of nonlinear network systems with dynamic event-triggered mechanism and hybrid cyber attack," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    2. Sakurama, Kazunori & Miura, Masashi, 2017. "Distributed constraint optimization on networked multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 272-281.
    3. Zhang, Li & Liu, Shuai, 2022. "Projected subgradient based distributed convex optimization with transmission noises," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    4. Zhang, Juan & Zhang, Huaguang & Cai, Yuliang & Wang, Wei, 2021. "Consensus control for nonlinear multi-agent systems with event-triggered communications," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yang & Wang, Xue & Wu, Yingcheng & Yue, Wenbin, 2023. "Dynamic average consensus control based on event-triggered cloud access," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    2. Xu, Qiyi & Zhang, Ning & Qi, Wenhai, 2023. "Finite-time control for discrete-time nonlinear Markov switching LPV systems with DoS attacks," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    3. Xu, Jiahong & Wang, Lijie & Liu, Yang & Sun, Jize & Pan, Yingnan, 2022. "Finite-time adaptive optimal consensus control for multi-agent systems subject to time-varying output constraints," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    4. Rezaei, Vahid & Khanmirza, Esmaeel, 2024. "Continuous-time min-max consensus protocol: A unified approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 292-310.
    5. Haiyan Li & Yong Tang, 2019. "Network Structure and Dynamics of Chinese Regional Incubation," Networks and Spatial Economics, Springer, vol. 19(4), pages 1173-1197, December.
    6. Samar, Mahvish & Farooq, Aamir & Li, Hanyu & Mu, Chunlai, 2019. "Sensitivity analysis for the generalized Cholesky factorization," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    7. Kaviarasan, Boomipalagan & Kwon, Oh-Min & Park, Myeong Jin & Sakthivel, Rathinasamy, 2023. "Reduced-order filtering for semi-Markovian jump systems against randomly occurring false data injection attacks," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    8. Wang, Xiaomin & Li, Feng & Hu, Xingliu & Wang, Jing, 2023. "Mixed H∞/passive synchronization for persistent dwell-time switched neural networks via an activation function dividing method," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    9. Mourad Kchaou & Mohamed Amin Regaieg, 2023. "Event-Triggered Extended Dissipativity Fuzzy Filter Design for Nonlinear Markovian Switching Systems against Deception Attacks," Mathematics, MDPI, vol. 11(9), pages 1-27, April.
    10. Sanjay, K. & Vijay Aravind, R. & Balasubramaniam, P., 2023. "Extended dissipative filter design for discrete-time interconnected fuzzy systems with time-varying delays subject to cyber attacks," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    11. Hu, Yifan & Liu, Wenhui, 2023. "Adaptive fuzzy dynamic surface control for nonstrict-feedback nonlinear state constrained systems with input dead-zone via event-triggered sampling," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    12. Sebastián Riffo & Walter Gil-González & Oscar Danilo Montoya & Carlos Restrepo & Javier Muñoz, 2022. "Adaptive Sensorless PI+Passivity-Based Control of a Boost Converter Supplying an Unknown CPL," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
    13. Xu, Lin-Xing & Wang, Yu-Long & Wang, Fei & Long, Yue, 2023. "Event-triggered active disturbance rejection trajectory tracking control for a quadrotor unmanned aerial vehicle," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    14. Chen, Boxun & Tang, Ze & Feng, Jianwen, 2024. "Matrix measure-based event-triggered consensus of multi-agent systems with hybrid time delays," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    15. Zhao, Lin & Yu, Jinpeng & Lin, Chong & Yu, Haisheng, 2017. "Distributed adaptive fixed-time consensus tracking for second-order multi-agent systems using modified terminal sliding mode," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 23-35.
    16. Wang, Xianming & Shen, Mouquan, 2023. "Model free optimal control of unknown nonaffine nonlinear systems with input quantization and DoS attack," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    17. Olamide Jogunola & Augustine Ikpehai & Kelvin Anoh & Bamidele Adebisi & Mohammad Hammoudeh & Sung-Yong Son & Georgina Harris, 2017. "State-Of-The-Art and Prospects for Peer-To-Peer Transaction-Based Energy System," Energies, MDPI, vol. 10(12), pages 1-28, December.
    18. João Abel Peças Lopes & André Guimarães Madureira & Manuel Matos & Ricardo Jorge Bessa & Vítor Monteiro & João Luiz Afonso & Sérgio F. Santos & João P. S. Catalão & Carlos Henggeler Antunes & Pedro Ma, 2020. "The future of power systems: Challenges, trends, and upcoming paradigms," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(3), May.
    19. Li, Jingwang & An, Qing & Su, Housheng, 2023. "Proximal nested primal-dual gradient algorithms for distributed constraint-coupled composite optimization," Applied Mathematics and Computation, Elsevier, vol. 444(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:445:y:2023:i:c:s0096300323000346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.