IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v434y2022ics0096300322005161.html
   My bibliography  Save this article

Adaptive sliding mode consensus control based on neural network for singular fractional order multi-agent systems

Author

Listed:
  • Zhang, Xuefeng
  • Chen, Shunan
  • Zhang, Jin-Xi

Abstract

In this paper, a suitable state feedback sliding mode controller is designed for the singular fractional order multi-agent systems (SFOMASs) with uncertainty, in order to realize the consensus problem of multi-agent. First, the sliding mode of the designed SFOMAS is in the form of singular systems. The criterion for the admissible consensus of sliding mode is given by using linear matrix inequality (LMI), and an adaptive law based on radial basis function neural network (RBFNN) is established to ensure the accessibility of SFOMASs. Then, a special method is studied to make the sliding mode of the designed SFOMAS normalization. A sufficient condition for the stability and consensus of sliding mode is given by using LMI, and an adaptive law based on RBFNN is established to ensure the accessibility of SFOMAS. Finally, two numerical examples show the applicability of the proposed method.

Suggested Citation

  • Zhang, Xuefeng & Chen, Shunan & Zhang, Jin-Xi, 2022. "Adaptive sliding mode consensus control based on neural network for singular fractional order multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 434(C).
  • Handle: RePEc:eee:apmaco:v:434:y:2022:i:c:s0096300322005161
    DOI: 10.1016/j.amc.2022.127442
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322005161
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127442?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jun Hu & Hongxu Zhang & Hongjian Liu & Xiaoyang Yu, 2021. "A survey on sliding mode control for networked control systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 52(6), pages 1129-1147, April.
    2. Tavazoei, Mohammad Saleh & Haeri, Mohammad, 2009. "A note on the stability of fractional order systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1566-1576.
    3. Jun Shen & James Lam, 2014. "State feedback control of commensurate fractional-order systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(3), pages 363-372.
    4. Guoliang Wei & Linlin Liu & Licheng Wang & Derui Ding, 2020. "Event-triggered control for discrete-time systems with unknown nonlinearities: an interval observer-based approach," International Journal of Systems Science, Taylor & Francis Journals, vol. 51(6), pages 1019-1031, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arockia Samy, Stephen & Anbalagan, Pratap, 2023. "Disturbance observer-based integral sliding-mode control design for leader-following consensus of multi-agent systems and its application to car-following model," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Chen, Jiqing & Zhang, Haiyan & Zhu, Tongtong & Pan, Shangtao, 2024. "Trajectory tracking control of a manipulator based on an immune algorithm-optimized neural network in the presence of unknown backlash-like hysteresis," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    3. Yao Lu, 2023. "The Maximum Correntropy Criterion-Based Identification for Fractional-Order Systems under Stable Distribution Noises," Mathematics, MDPI, vol. 11(20), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jinling & Liang, Jinling & Zhang, Cheng-Tang & Fan, Dongmei, 2021. "Event-triggered non-fragile control for uncertain positive Roesser model with PDT switching mechanism," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    2. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Silva-Juárez, Alejandro & Tlelo-Cuautle, Esteban & de la Fraga, Luis Gerardo & Li, Rui, 2021. "Optimization of the Kaplan-Yorke dimension in fractional-order chaotic oscillators by metaheuristics," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    4. Li, Xin & Wei, Guoliang & Ding, Derui, 2021. "Distributed resilient interval estimation for sensor networks under aperiodic denial-of-service attacks and adaptive event-triggered protocols," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    5. Ravi Agarwal & Snezhana Hristova & Donal O’Regan, 2018. "Applications of Lyapunov Functions to Caputo Fractional Differential Equations," Mathematics, MDPI, vol. 6(11), pages 1-17, October.
    6. Zhang, Zhe & Zhang, Jing & Ai, Zhaoyang & Cheng, FanYong & Liu, Feng, 2020. "A novel general stability criterion of time-delay fractional-order nonlinear systems based on WILL Deduction Method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 328-344.
    7. Reda El Abbadi & Mohamed Aatabe & Allal El Moubarek Bouzid, 2024. "Wireless Diagnosis and Control of DC–DC Converter for Off-Grid Photovoltaic Systems," Sustainability, MDPI, vol. 16(8), pages 1-20, April.
    8. Guo, Xinchen & Wei, Guoliang, 2023. "Distributed sliding mode consensus control for multiple discrete-Time Euler-Lagrange systems," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    9. Munoz-Pacheco, J.M. & Zambrano-Serrano, E. & Volos, Ch. & Tacha, O.I. & Stouboulos, I.N. & Pham, V.-T., 2018. "A fractional order chaotic system with a 3D grid of variable attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 69-78.
    10. Chen, Yiming & Ke, Xiaohong & Wei, Yanqiao, 2015. "Numerical algorithm to solve system of nonlinear fractional differential equations based on wavelets method and the error analysis," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 475-488.
    11. Wei Zhang & Shanshan Yu & Ling Wang & Wei Guo & Man-Fai Leung, 2024. "Constrained Symmetric Non-Negative Matrix Factorization with Deep Autoencoders for Community Detection," Mathematics, MDPI, vol. 12(10), pages 1-17, May.
    12. Roxana Motorga & Vlad Mureșan & Mihaela-Ligia Ungureșan & Mihail Abrudean & Honoriu Vălean & Iulia Clitan, 2022. "Artificial Intelligence in Fractional-Order Systems Approximation with High Performances: Application in Modelling of an Isotopic Separation Process," Mathematics, MDPI, vol. 10(9), pages 1-32, April.
    13. Muñoz-Vázquez, Aldo Jonathan & Ortiz-Moctezuma, Manuel Benjamín & Sánchez-Orta, Anand & Parra-Vega, Vicente, 2019. "Adaptive robust control of fractional-order systems with matched and mismatched disturbances," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 162(C), pages 85-96.
    14. Dongya Li & Xiaoping Zhang & Shuang Wang & Fengxiang You, 2022. "Robust Synchronization of Fractional-Order Chaotic System Subject to Disturbances," Mathematics, MDPI, vol. 10(24), pages 1-15, December.
    15. Yang, Xue & Su, Yongmei & Yang, Liangli & Zhuo, Xinjian, 2022. "Global analysis and simulation of a fractional order HBV immune model," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    16. Li, Jiaxing & Hu, Jun & Cheng, Jun & Wei, Yunliang & Yu, Hui, 2022. "Distributed filtering for time-varying state-saturated systems with packet disorders: An event-triggered case," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    17. Orest Lozynskyy & Damian Mazur & Yaroslav Marushchak & Bogdan Kwiatkowski & Andriy Lozynskyy & Tadeusz Kwater & Bohdan Kopchak & Przemysław Hawro & Lidiia Kasha & Robert Pękala & Robert Ziemba & Bogus, 2021. "Formation of Characteristic Polynomials on the Basis of Fractional Powers j of Dynamic Systems and Stability Problems of Such Systems," Energies, MDPI, vol. 14(21), pages 1-35, November.
    18. Zhou, Xian-Feng & Yang, Fuli & Jiang, Wei, 2015. "Analytic study on linear neutral fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 295-307.
    19. Bahrampour, Elham & Asemani, Mohammad Hassan & Dehghani, Maryam, 2023. "Robust global synchronization of delayed incommensurate fractional-order gene regulatory networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    20. W. K. Zahra & S. M. Elkholy, 2012. "The Use of Cubic Splines in the Numerical Solution of Fractional Differential Equations," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2012, pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:434:y:2022:i:c:s0096300322005161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.