IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v426y2022ics0096300322001801.html
   My bibliography  Save this article

Observer and boundary output feedback control for coupled ODE-transport PDE

Author

Listed:
  • Mathiyalagan, K.
  • Nidhi, A. Shree
  • Su, H.
  • Renugadevi, T.

Abstract

This work focuses on the observer design for a first order ODE-transport PDE coupled at the boundary points. A novel anti-collocated observer and an output feedback boundary control law are designed for an under-actuated coupled system using the backstepping method. The homo-directional hyperbolic type PDE is considered with in-domain coupling between the states. The stabilization of the coupled systems are discussed by Lyapunov theory and linear matrix inequality (LMI) approach is implemented to design the gains. The obtained results show that the observer value coincides with the actual ones and it has been demonstrated through numerical examples. The effectiveness of the output feedback controller is also illustrated.

Suggested Citation

  • Mathiyalagan, K. & Nidhi, A. Shree & Su, H. & Renugadevi, T., 2022. "Observer and boundary output feedback control for coupled ODE-transport PDE," Applied Mathematics and Computation, Elsevier, vol. 426(C).
  • Handle: RePEc:eee:apmaco:v:426:y:2022:i:c:s0096300322001801
    DOI: 10.1016/j.amc.2022.127096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322001801
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yin, Qitian & Wang, Mao & Jing, He, 2020. "Stabilizing backstepping controller design for arbitrarily switched complex nonlinear system," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    2. Chang, Xiao-Heng & Jin, Xue, 2022. "Observer-based fuzzy feedback control for nonlinear systems subject to transmission signal quantization," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    3. Mlayeh, Rhouma & Toumi, Samir & Beji, Lotfi, 2018. "Backstepping boundary observer based-control for hyperbolic PDE in rotary drilling system," Applied Mathematics and Computation, Elsevier, vol. 322(C), pages 66-78.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Yong-Sheng & Che, Wei-Wei & Deng, Chao, 2022. "Observer-Based fuzzy containment control for nonlinear networked mass under dos attacks," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    2. Ren, Yingying & Ding, Da-Wei & Long, Yue, 2023. "Finite-frequency fixed-order dynamic output-feedback control via a homogeneous polynomially parameter-dependent technique," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    3. Zhu, Hao-Yang & Jiang, Xiaoyue & Li, Yuan-Xin & Tong, Shaocheng, 2023. "Finite-time adaptive fuzzy output tracking of switched nonlinear systems with ISD-ADT," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    4. Sorin Lugojan & Loredana Ciurdariu & Eugenia Grecu, 2022. "Chenciner Bifurcation Presenting a Further Degree of Degeneration," Mathematics, MDPI, vol. 10(9), pages 1-17, May.
    5. Saravanan Shanmugam & Rajarathinam Vadivel & Nallappan Gunasekaran, 2023. "Finite-Time Synchronization of Quantized Markovian-Jump Time-Varying Delayed Neural Networks via an Event-Triggered Control Scheme under Actuator Saturation," Mathematics, MDPI, vol. 11(10), pages 1-24, May.
    6. Chen, Qi-Xin & Chang, Xiao-Heng, 2022. "Resilient filter of nonlinear network systems with dynamic event-triggered mechanism and hybrid cyber attack," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    7. Zhang, Ning & Qi, Wenhai & Pang, Guocheng & Cheng, Jun & Shi, Kaibo, 2022. "Observer-based sliding mode control for fuzzy stochastic switching systems with deception attacks," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    8. Song, Xiaona & Zhang, Renzhi & Song, Shuai & Zhang, Yijun, 2022. "Fuzzy adaptive-event-triggered control for semi-linear parabolic PDE systems with stochastic actuator failures," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    9. Zhu, Lin & Che, Wei-Wei & Jin, Xiao-Zheng, 2022. "Dynamic event-triggered tracking control for model-free networked control systems," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    10. Chen, Xiang & Li, Shi & Wang, Ronghao & Xiang, Zhengrong, 2023. "Event-Triggered output feedback adaptive control for nonlinear switched interconnected systems with unknown control coefficients," Applied Mathematics and Computation, Elsevier, vol. 445(C).
    11. Zhimin Li & Chengming Lu & Hongyu Wang, 2023. "Non-Fragile Fuzzy Tracking Control for Nonlinear Networked Systems with Dynamic Quantization and Randomly Occurring Gain Variations," Mathematics, MDPI, vol. 11(5), pages 1-20, February.
    12. Jiao, Ticao & Qi, Xiaomei & Jiang, Jishun & Yu, Mingzheng, 2022. "Noise-input-to-state stability analysis of switching stochastic nonlinear systems with mode-dependent multiple impulses," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    13. Harshavarthini, S. & Kwon, O.M. & Lee, S.M., 2022. "Uncertainty and disturbance estimator-based resilient tracking control design for fuzzy semi-Markovian jump systems," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    14. Hu, Yifan & Liu, Wenhui & Liu, Guobao, 2022. "Adaptive finite‐time event‐triggered control for uncertain nonlinearly parameterized systems with unknown control direction and actuator failures," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    15. Zou, Ying & Deng, Chao & Dong, Lu & Ding, Lei & Lu, Ming, 2022. "Distributed output feedback consensus tracking control of multiple nonholonomic mobile robots with only position information of leader," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    16. Li, Jiahao & Liu, Yu & Yu, Jinyong, 2022. "A new result on semi-synchronous event-triggered backstepping robust control for a class of non-Lipschitzian networked systems," Applied Mathematics and Computation, Elsevier, vol. 424(C).
    17. Ma, Yan & Zhang, Zhenzhen & Yang, Li & Chen, Hao & Zhang, Yihao, 2022. "A resilient optimized dynamic event-triggered mechanism on networked control system with switching behavior under mixed attacks," Applied Mathematics and Computation, Elsevier, vol. 430(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:426:y:2022:i:c:s0096300322001801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.