IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i14p2167-d1432663.html
   My bibliography  Save this article

Command-Filtered Nussbaum Design for Nonlinear Systems with Unknown Control Direction and Input Constraints

Author

Listed:
  • Yuxuan Liu

    (School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9IT, UK)

Abstract

This paper studies the problem of adaptive fuzzy control based on command filtering for a class of nonlinear systems characterized by an input dead zone, input saturation, and unknown control direction. First, this paper proposes a novel equivalent transformation technique that simplifies the design complexity of multiple input constraints by converting the input dead zone and saturation nonlinearities into a unified functional form. Subsequently, a fuzzy logic system is utilized to handle the unknown nonlinear functions, and the command-filtering method is employed to address the issue of complexity explosion, while the Nussbaum function is utilized to resolve the challenge of an unknown control direction. Based on Lyapunov stability, it is proven that the tracking error converges to a small neighborhood around the origin, and all closed-loop signals are bounded. Finally, a numerical simulation result and an actual simulation result of a pendulum are presented to verify the feasibility and effectiveness of the proposed control strategy.

Suggested Citation

  • Yuxuan Liu, 2024. "Command-Filtered Nussbaum Design for Nonlinear Systems with Unknown Control Direction and Input Constraints," Mathematics, MDPI, vol. 12(14), pages 1-17, July.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:14:p:2167-:d:1432663
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/14/2167/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/14/2167/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Zheng & Wang, Fang & Zhu, Ruitai, 2021. "Finite-time adaptive neural control of nonlinear systems with unknown output hysteresis," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Ziwen & Zhang, Tianping & Xia, Xiaonan & Hua, Yu, 2022. "Finite-time adaptive neural command filtered control for non-strict feedback uncertain multi-agent systems including prescribed performance and input nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    2. Liu, Shanlin & Niu, Ben & Zong, Guangdeng & Zhao, Xudong & Xu, Ning, 2022. "Adaptive fixed-time hierarchical sliding mode control for switched under-actuated systems with dead-zone constraints via event-triggered strategy," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    3. Bin Li & Jiahao Zhu & Ranran Zhou & Guoxing Wen, 2022. "Adaptive Neural Network Sliding Mode Control for a Class of SISO Nonlinear Systems," Mathematics, MDPI, vol. 10(7), pages 1-12, April.
    4. Zhang, Guodong & Cao, Jinde, 2023. "New results on fixed/predefined-time synchronization of delayed fuzzy inertial discontinuous neural networks: Non-reduced order approach," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    5. Wang, Kun-Peng & Ding, Dong & Tang, Ze & Feng, Jianwen, 2022. "Leader-Following consensus of nonlinear multi-agent systems with hybrid delays: Distributed impulsive pinning strategy," Applied Mathematics and Computation, Elsevier, vol. 424(C).
    6. Cui, Di & Zou, Wencheng & Guo, Jian & Xiang, Zhengrong, 2022. "Neural network-based adaptive finite-time tracking control of switched nonlinear systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 428(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:14:p:2167-:d:1432663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.