IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v452y2016icp266-280.html
   My bibliography  Save this article

A novel approach to synchronization of nonlinearly coupled network systems with delays

Author

Listed:
  • Tseng, Jui-Pin

Abstract

In this investigation, a novel approach to establishing the global synchronization of coupled network systems is presented. Under this approach, individual subsystems can be non-autonomous, and the coupling configuration is rather general. The coupling terms can be non-diffusive, nonlinear, time-dependent, asymmetric, and with time delays. With an iteration scheme, the problem of synchronization is transformed into solving a corresponding linear system of algebraic equations. Subsequently, delay-dependent and delay-independent criteria for global synchronization can be established. We implement the present approach to analyze synchronization of the FitzHugh–Nagumo systems under delayed and nonlinear sigmoidal coupling. Two examples are presented to demonstrate new dynamical scenarios, where oscillatory behavior and multistability emerge or are suppressed as the coupled neurons synchronize under the synchronization criterion. In addition, asynchrony induced by the coupling strength or coupling delay occurs while the synchronization criterion is violated.

Suggested Citation

  • Tseng, Jui-Pin, 2016. "A novel approach to synchronization of nonlinearly coupled network systems with delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 266-280.
  • Handle: RePEc:eee:phsmap:v:452:y:2016:i:c:p:266-280
    DOI: 10.1016/j.physa.2016.02.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116001916
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.02.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Qingyun & Duan, Zhisheng & Chen, Guanrong & Feng, Zhaosheng, 2008. "Synchronization in a class of weighted complex networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5616-5622.
    2. Wu, Jianshe & Jiao, Licheng, 2007. "Synchronization in complex delayed dynamical networks with nonsymmetric coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 513-530.
    3. Wu, Jianshe & Jiao, Licheng, 2007. "Observer-based synchronization in complex dynamical networks with nonsymmetric coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 469-480.
    4. Liu, Xiwei & Chen, Tianping, 2007. "Exponential synchronization of nonlinear coupled dynamical networks with a delayed coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 82-92.
    5. Cao, Jinde & Wang, Zidong & Sun, Yonghui, 2007. "Synchronization in an array of linearly stochastically coupled networks with time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 718-728.
    6. Liu, Xiwei & Chen, Tianping, 2008. "Synchronization analysis for nonlinearly-coupled complex networks with an asymmetrical coupling matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4429-4439.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Ranran & Peng, Mingshu & Yu, Weibin, 2014. "Pinning synchronization of delayed complex dynamical networks with nonlinear coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 426-431.
    2. Wu, Jianshe & Jiao, Licheng, 2008. "Synchronization in dynamic networks with nonsymmetrical time-delay coupling based on linear feedback controllers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2111-2119.
    3. Liang, Yi & Wang, Xingyuan, 2014. "Synchronization in complex networks with non-delay and delay couplings via intermittent control with two switched periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 434-444.
    4. Weiwei Zhang & Jinde Cao & Dingyuan Chen & Ahmed Alsaedi, 2019. "Out Lag Synchronization of Fractional Order Delayed Complex Networks with Coupling Delay via Pinning Control," Complexity, Hindawi, vol. 2019, pages 1-7, August.
    5. Zhao, Hui & Li, Lixiang & Xiao, Jinghua & Yang, Yixian & Zheng, Mingwen, 2017. "Parameters tracking identification based on finite-time synchronization for multi-links complex network via periodically switch control," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 268-281.
    6. Zhang, Hai & Ye, Miaolin & Ye, Renyu & Cao, Jinde, 2018. "Synchronization stability of Riemann–Liouville fractional delay-coupled complex neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 155-165.
    7. Ding, Dong & Tang, Ze & Wang, Yan & Ji, Zhicheng, 2021. "Secure synchronization of complex networks under deception attacks against vulnerable nodes," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    8. Junwei Wang & Kairui Chen & Yun Zhang, 2017. "Consensus of High-Order Nonlinear Multiagent Systems with Constrained Switching Topologies," Complexity, Hindawi, vol. 2017, pages 1-11, January.
    9. Suo, JingJing & Hu, Hongxiao & Xu, Liguang, 2023. "Delay-dependent impulsive control for lag quasi-synchronization of stochastic complex dynamical networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 134-153.
    10. Xuan, Deli & Tang, Ze & Feng, Jianwen & Park, Ju H., 2021. "Cluster synchronization of nonlinearly coupled Lur’e networks: Delayed impulsive adaptive control protocols," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    11. Zhang, Yu & Feng, Zhi Guo & Yang, Xinsong & Alsaadi, Fuad E. & Ahmad, Bashir, 2018. "Finite-time stabilization for a class of nonlinear systems via optimal control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 146(C), pages 14-26.
    12. Hongjie Li & W. K. Wong & Yang Tang, 2012. "Global Synchronization Stability for Stochastic Complex Dynamical Networks with Probabilistic Interval Time-Varying Delays," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 496-516, February.
    13. Korneev, I.A. & Semenov, V.V. & Slepnev, A.V. & Vadivasova, T.E., 2021. "Complete synchronization of chaos in systems with nonlinear inertial coupling," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    14. Zhang, Yan-Jie & Liu, Song & Yang, Ran & Tan, Ying-Ying & Li, Xiaoyan, 2019. "Global synchronization of fractional coupled networks with discrete and distributed delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 830-837.
    15. Jie Liu & Jian-Ping Sun, 2024. "Clustering Component Synchronization of Nonlinearly Coupled Complex Networks via Pinning Control," Mathematics, MDPI, vol. 12(7), pages 1-17, March.
    16. Chen, Xi & Luo, Maokang & Zhong, Yangfan & Zhang, Lu, 2022. "Collective dynamic behaviors of a general adjacent coupled chain in both unconfined and confined spaces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    17. Cheng, Lin & Yang, Yongqing & Li, Li & Sui, Xin, 2018. "Finite-time hybrid projective synchronization of the drive-response complex networks with distributed-delay via adaptive intermittent control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 273-286.
    18. Wu, Fuqiang & Kang, Ting & Shao, Yan & Wang, Qingyun, 2023. "Stability of Hopfield neural network with resistive and magnetic coupling," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    19. Hu, Aihua & Cao, Jinde & Hu, Manfeng & Guo, Liuxiao, 2014. "Cluster synchronization in directed networks of non-identical systems with noises via random pinning control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 537-548.
    20. Du, Hongyue, 2011. "Function projective synchronization in drive–response dynamical networks with non-identical nodes," Chaos, Solitons & Fractals, Elsevier, vol. 44(7), pages 510-514.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:452:y:2016:i:c:p:266-280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.