IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v140y2020ics0960077920306123.html
   My bibliography  Save this article

Fixed-time synchronization of complex networks with time-varying delays

Author

Listed:
  • Hu, Jingting
  • Sui, Guixia
  • Li, Xiaodi

Abstract

This paper deals with the fixed-time synchronization of complex networks with both internal and coupled time-varying delays. Two different controllers are designed to realize the fixed-time synchronization goal. By constructing the Lyapunov function and using inequality analysis technique, several novel synchronization criteria are derived in term of linear matrix inequalities(LMIs). Moreover, the settling time of fixed-time synchronization can be estimated via controller parameters regardless of the initial conditions. Finally, two numerical examples are given to illustrate the effectiveness of our results.

Suggested Citation

  • Hu, Jingting & Sui, Guixia & Li, Xiaodi, 2020. "Fixed-time synchronization of complex networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920306123
    DOI: 10.1016/j.chaos.2020.110216
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920306123
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110216?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Mengzhuo & Cheng, Jun & Liu, Xinzhi & Zhong, Shouming, 2019. "An extended synchronization analysis for memristor-based coupled neural networks via aperiodically intermittent control," Applied Mathematics and Computation, Elsevier, vol. 344, pages 163-182.
    2. Chen, Chuan & Li, Lixiang & Peng, Haipeng & Kurths, Jürgen & Yang, Yixian, 2018. "Fixed-time synchronization of hybrid coupled networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 49-56.
    3. Zongyu Zuo & Lin Tie, 2016. "Distributed robust finite-time nonlinear consensus protocols for multi-agent systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(6), pages 1366-1375, April.
    4. Li, Xiaodi & Yang, Xueyan & Huang, Tingwen, 2019. "Persistence of delayed cooperative models: Impulsive control method," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 130-146.
    5. Zhang, Wanli & Li, Chuandong & Huang, Tingwen & Huang, Junjian, 2018. "Fixed-time synchronization of complex networks with nonidentical nodes and stochastic noise perturbations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1531-1542.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arinushkin, P.A. & Vadivasova, T.E., 2021. "Nonlinear damping effects in a simplified power grid model based on coupled Kuramoto-like oscillators with inertia," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Assali, El Abed, 2021. "Predefined-time synchronization of chaotic systems with different dimensions and applications," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    3. Tao Xie & Qike Zhang & Xing Xiong, 2024. "Edge-Based Synchronization Control Criteria of Complex Dynamical Networks with Reaction–Diffusions," Mathematics, MDPI, vol. 12(12), pages 1-18, June.
    4. Wang, Kun-Peng & Ding, Dong & Tang, Ze & Feng, Jianwen, 2022. "Leader-Following consensus of nonlinear multi-agent systems with hybrid delays: Distributed impulsive pinning strategy," Applied Mathematics and Computation, Elsevier, vol. 424(C).
    5. Cui, Xueke & Li, Hong-Li & Zhang, Long & Hu, Cheng & Bao, Haibo, 2023. "Complete synchronization for discrete-time fractional-order coupled neural networks with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Yongshun & Li, Xiaodi & Cao, Jinde, 2020. "Global exponential stability for impulsive systems with infinite distributed delay based on flexible impulse frequency," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    2. Cui, Guozeng & Xu, Hui & Yu, Jinpeng & Ma, Jiali & Li, Ze, 2023. "Fixed-time distributed adaptive attitude control for multiple QUAVs with quantized input," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    3. Zhao, Shiyi & Pan, Yingnan & Du, Peihao & Liang, Hongjing, 2020. "Adaptive control for non-affine nonlinear systems with input saturation and output dead zone," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    4. Cai, Shuiming & Zhou, Feilong & He, Qinbin, 2019. "Fixed-time cluster lag synchronization in directed heterogeneous community networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 128-142.
    5. Liu, Haoliang & Zhang, Taixiang & Li, Xiaodi, 2021. "Event-triggered control for nonlinear systems with impulse effects," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    6. Shafaat Ullah & Laiq Khan & Irfan Sami & Ghulam Hafeez & Fahad R. Albogamy, 2021. "A Distributed Hierarchical Control Framework for Economic Dispatch and Frequency Regulation of Autonomous AC Microgrids," Energies, MDPI, vol. 14(24), pages 1-23, December.
    7. Zhang, Wanli & Yang, Xinsong & Yang, Shiju & Alsaedi, Ahmed, 2021. "Finite-time and fixed-time bipartite synchronization of complex networks with signed graphs," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 319-329.
    8. Cao, Yang & Udhayakumar, K. & Veerakumari, K. Pradeepa & Rakkiyappan, R., 2022. "Memory sampled data control for switched-type neural networks and its application in image secure communications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 564-587.
    9. Xing, Ying & He, Xinyi & Li, Xiaodi, 2023. "Lyapunov conditions for finite-time stability of disturbed nonlinear impulsive systems," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    10. Runze Chen & Zhenling Wang & Weiwei Che, 2022. "Adaptive Sliding Mode Attitude-Tracking Control of Spacecraft with Prescribed Time Performance," Mathematics, MDPI, vol. 10(3), pages 1-18, January.
    11. Fan, Hongguang & Shi, Kaibo & Zhao, Yi, 2022. "Pinning impulsive cluster synchronization of uncertain complex dynamical networks with multiple time-varying delays and impulsive effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    12. Dutta, Maitreyee & Roy, Binoy Krishna, 2021. "A new memductance-based fractional-order chaotic system and its fixed-time synchronisation," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    13. Li, Zhao-Yan & Shang, Shengnan & Lam, James, 2019. "On stability of neutral-type linear stochastic time-delay systems with three different delays," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 147-166.
    14. Kanchanaharuthai, Adirak & Mujjalinvimut, Ekkachai, 2022. "Fixed-time command-filtered backstepping control design for hydraulic turbine regulating systems," Renewable Energy, Elsevier, vol. 184(C), pages 1091-1103.
    15. He, Xinyi & Wang, Yuhan & Li, Xiaodi, 2021. "Uncertain impulsive control for leader-following synchronization of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    16. Liu, Jixin & Song, Shimin & Jiang, Haijun & Li, Jiarong & Liu, Xiaolin, 2020. "New results of projective synchronization for memristor-based coupled neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    17. Yiping Luo & Yuejie Yao, 2019. "Finite-Time Synchronization of Uncertain Complex Dynamic Networks with Nonlinear Coupling," Complexity, Hindawi, vol. 2019, pages 1-14, December.
    18. Hang Wang & Yanfei Dong & Guofeng He & Wenbin Song, 2024. "Fixed-Time Backstepping Sliding-Mode Control for Interleaved Boost Converter in DC Microgrids," Energies, MDPI, vol. 17(21), pages 1-20, October.
    19. Xi, Qiang & Liu, Xinzhi, 2020. "Mode-dependent impulsive control of positive switched systems: Stability and L1-gain analysis," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    20. Mohamed Zaery & Panbao Wang & Wei Wang & Dianguo Xu, 2022. "A Novel Optimal Power Allocation Control System with High Convergence Rate for DC Microgrids Cluster," Energies, MDPI, vol. 15(11), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920306123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.