IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i9p1417-d403187.html
   My bibliography  Save this article

Mean Square Convergent Non-Standard Numerical Schemes for Linear Random Differential Equations with Delay

Author

Listed:
  • Julia Calatayud

    (Instituto Universitario de Matemática Multidisciplinar, Building 8G, Access C, 2nd Floor, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain)

  • Juan Carlos Cortés

    (Instituto Universitario de Matemática Multidisciplinar, Building 8G, Access C, 2nd Floor, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain)

  • Marc Jornet

    (Instituto Universitario de Matemática Multidisciplinar, Building 8G, Access C, 2nd Floor, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain)

  • Francisco Rodríguez

    (Department of Applied Mathematics, University of Alicante, Apdo. 99, 03080 Alicante, Spain)

Abstract

In this paper, we are concerned with the construction of numerical schemes for linear random differential equations with discrete delay. For the linear deterministic differential equation with discrete delay, a recent contribution proposed a family of non-standard finite difference (NSFD) methods from an exact numerical scheme on the whole domain. The family of NSFD schemes had increasing order of accuracy, was dynamically consistent, and possessed simple computational properties compared to the exact scheme. In the random setting, when the two equation coefficients are bounded random variables and the initial condition is a regular stochastic process, we prove that the randomized NSFD schemes converge in the mean square (m.s.) sense. M.s. convergence allows for approximating the expectation and the variance of the solution stochastic process. In practice, the NSFD scheme is applied with symbolic inputs, and afterward the statistics are explicitly computed by using the linearity of the expectation. This procedure permits retaining the increasing order of accuracy of the deterministic counterpart. Some numerical examples illustrate the approach. The theoretical m.s. convergence rate is supported numerically, even when the two equation coefficients are unbounded random variables. M.s. dynamic consistency is assessed numerically. A comparison with Euler’s method is performed. Finally, an example dealing with the time evolution of a photosynthetic bacterial population is presented.

Suggested Citation

  • Julia Calatayud & Juan Carlos Cortés & Marc Jornet & Francisco Rodríguez, 2020. "Mean Square Convergent Non-Standard Numerical Schemes for Linear Random Differential Equations with Delay," Mathematics, MDPI, vol. 8(9), pages 1-17, August.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1417-:d:403187
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/9/1417/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/9/1417/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Caraballo, Tomás & Cortés, J.-C. & Navarro-Quiles, A., 2019. "Applying the random variable transformation method to solve a class of random linear differential equation with discrete delay," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 198-218.
    2. Liliana Harding & Mihaela Neamţu, 2018. "A Dynamic Model of Unemployment with Migration and Delayed Policy Intervention," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 427-462, March.
    3. García, M.A. & Castro, M.A. & Martín, J.A. & Rodríguez, F., 2018. "Exact and nonstandard numerical schemes for linear delay differential models," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 337-345.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oluwatayo Michael Ogunmiloro & Adesoji Abraham Obayomi & Gazali Oluwasegun Agboola, 2024. "The Menace of Ghost Workers, Job Racketeers, and Creators of Online Job Offer Scam Sites on Unemployment in Nigeria: A Mathematical Model Analysis and Control," SN Operations Research Forum, Springer, vol. 5(2), pages 1-38, June.
    2. Zhao, Yongshun & Li, Xiaodi & Cao, Jinde, 2020. "Global exponential stability for impulsive systems with infinite distributed delay based on flexible impulse frequency," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    3. Abraham J. Arenas & Gilberto González-Parra & Jhon J. Naranjo & Myladis Cogollo & Nicolás De La Espriella, 2021. "Mathematical Analysis and Numerical Solution of a Model of HIV with a Discrete Time Delay," Mathematics, MDPI, vol. 9(3), pages 1-21, January.
    4. Eva Kaslik & Mihaela Neamţu & Loredana Flavia Vesa, 2021. "Global Stability Analysis of a Five-Dimensional Unemployment Model with Distributed Delay," Mathematics, MDPI, vol. 9(23), pages 1-15, November.
    5. Jornet, Marc, 2021. "Exact solution to a multidimensional wave equation with delay," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    6. Yoon Kyung Kwak & Ming Sheng Wang, 2022. "Exclusion or Inclusion: National Differential Regulations of Migrant Workers’ Employment, Social Protection, and Migrations Policies on Im/Mobilities in East Asia-Examples of South Korea and Taiwan," IJERPH, MDPI, vol. 19(23), pages 1-17, December.
    7. Kerr, Gilbert & González-Parra, Gilberto & Sherman, Michele, 2022. "A new method based on the Laplace transform and Fourier series for solving linear neutral delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    8. Sharmin Sultana & Gilberto González-Parra & Abraham J. Arenas, 2023. "Mathematical Modeling of Toxoplasmosis in Cats with Two Time Delays under Environmental Effects," Mathematics, MDPI, vol. 11(16), pages 1-20, August.
    9. Kaslik, Eva & Neamţu, Mihaela & Vesa, Loredana Flavia, 2021. "Global stability analysis of an unemployment model with distributed delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 535-546.
    10. Anastasia Blouchoutzi & Georgios Tsaples & Dimitra Manou & Jason Papathanasiou, 2023. "Investigating Public–Private Cooperation in Migrant Labor Market Integration: A System Dynamics Study to Explore the Challenge for Greece," Economies, MDPI, vol. 11(2), pages 1-27, January.
    11. Xiaodi Li & A. Vinodkumar & T. Senthilkumar, 2019. "Exponential Stability Results on Random and Fixed Time Impulsive Differential Systems with Infinite Delay," Mathematics, MDPI, vol. 7(9), pages 1-22, September.
    12. María Ángeles Castro & Miguel Antonio García & José Antonio Martín & Francisco Rodríguez, 2019. "Exact and Nonstandard Finite Difference Schemes for Coupled Linear Delay Differential Systems," Mathematics, MDPI, vol. 7(11), pages 1-14, November.
    13. Carlos Julio Mayorga & María Ángeles Castro & Antonio Sirvent & Francisco Rodríguez, 2023. "On the Construction of Exact Numerical Schemes for Linear Delay Models," Mathematics, MDPI, vol. 11(8), pages 1-9, April.
    14. Juan Carlos Cortés & Marc Jornet, 2020. "L p -Solution to the Random Linear Delay Differential Equation with a Stochastic Forcing Term," Mathematics, MDPI, vol. 8(6), pages 1-16, June.
    15. Njike-Tchaptchet, Eric Rostand & Tadmon, Calvin, 2023. "Mathematical modeling of the unemployment problem in a context of financial crisis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 241-262.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1417-:d:403187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.