Solutions of neutral delay differential equations using a generalized Lambert W function
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2020.125334
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- H. Vazquez-Leal & M. A. Sandoval-Hernandez & J. L. Garcia-Gervacio & A. L. Herrera-May & U. A. Filobello-Nino, 2019. "PSEM Approximations for Both Branches of Lambert Function with Applications," Discrete Dynamics in Nature and Society, Hindawi, vol. 2019, pages 1-15, March.
- Ewerhart, Christian & Sun, Guang-Zhen, 2018. "Equilibrium in the symmetric two-player Hirshleifer contest: Uniqueness and characterization," Economics Letters, Elsevier, vol. 169(C), pages 51-54.
- Qin, Hongyu & Zhang, Qifeng & Wan, Shaohua, 2019. "The continuous Galerkin finite element methods for linear neutral delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 76-85.
- Christian Ewerhart & Guang-Zhen Sun, 2018. "Equilibrium in the symmetric Hirshleifer contest: uniqueness and characterization," ECON - Working Papers 286, Department of Economics - University of Zurich.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Abraham J. Arenas & Gilberto González-Parra & Jhon J. Naranjo & Myladis Cogollo & Nicolás De La Espriella, 2021. "Mathematical Analysis and Numerical Solution of a Model of HIV with a Discrete Time Delay," Mathematics, MDPI, vol. 9(3), pages 1-21, January.
- Kerr, Gilbert & González-Parra, Gilberto & Sherman, Michele, 2022. "A new method based on the Laplace transform and Fourier series for solving linear neutral delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 420(C).
- Kerr, Gilbert & González-Parra, Gilberto, 2022. "Accuracy of the Laplace transform method for linear neutral delay differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 308-326.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ewerhart, Christian & Sun, Guang-Zhen, 2024.
"The n-player Hirshleifer contest,"
Games and Economic Behavior, Elsevier, vol. 143(C), pages 300-320.
- Christian Ewerhart & Guang-Zhen Sun, 2020. "The n-player Hirshleifer contest," ECON - Working Papers 361, Department of Economics - University of Zurich, revised Oct 2023.
- Ewerhart, Christian, 2024.
"A game-theoretic implication of the Riemann hypothesis,"
Mathematical Social Sciences, Elsevier, vol. 128(C), pages 52-59.
- Christian Ewerhart, 2022. "A game-theoretic implication of the Riemann hypothesis," ECON - Working Papers 410, Department of Economics - University of Zurich, revised May 2023.
- Christian Ewerhart, 2021. "A typology of military conflict based on the Hirshleifer contest," ECON - Working Papers 400, Department of Economics - University of Zurich.
- Wang, Xiuping & Gao, Fuzheng & Liu, Yang & Sun, Zhengjia, 2020. "A Weak Galerkin Finite Element Method for High Dimensional Time-fractional Diffusion Equation," Applied Mathematics and Computation, Elsevier, vol. 386(C).
- Kerr, Gilbert & González-Parra, Gilberto & Sherman, Michele, 2022. "A new method based on the Laplace transform and Fourier series for solving linear neutral delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 420(C).
- Kerr, Gilbert & González-Parra, Gilberto, 2022. "Accuracy of the Laplace transform method for linear neutral delay differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 308-326.
- Lóczi, Lajos, 2022. "Guaranteed- and high-precision evaluation of the Lambert W function," Applied Mathematics and Computation, Elsevier, vol. 433(C).
- Dejan Brkić & Pavel Praks, 2019. "Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function: Reply to Discussion," Mathematics, MDPI, vol. 7(5), pages 1-7, May.
- Jian, Huan-Yan & Huang, Ting-Zhu & Ostermann, Alexander & Gu, Xian-Ming & Zhao, Yong-Liang, 2021. "Fast numerical schemes for nonlinear space-fractional multidelay reaction-diffusion equations by implicit integration factor methods," Applied Mathematics and Computation, Elsevier, vol. 408(C).
More about this item
Keywords
Generalized Lambert W function; Neutral delay differential equation;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:382:y:2020:i:c:s0096300320303003. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.