IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v343y2019icp354-371.html
   My bibliography  Save this article

Adaptive fuzzy control for pure-feedback systems with full state constraints and unknown nonlinear dead zone

Author

Listed:
  • Xiao, Wenbin
  • Cao, Liang
  • Dong, Guowei
  • Zhou, Qi

Abstract

In this paper, an adaptive control problem for a class of pure-feedback time-varying delay nonlinear systems with full state constraints and unknown dead zone is investigated. Differing from the full state constraints without considering the time-varying delay in nonlinear systems, a well defined Barrier Lyapunov-Krasovskii functional is designed to address the difficult in this paper. By defining a continuous function and combining with mean value theorem, system is modeled with dead zone. Furthermore, a novel adaptive control scheme is developed based on recursive backstepping method. It is proved that the proposed approach can guarantee a desired tracking performance and semi-global asymptotically stability of the closed-loop system. Finally, some simulation results are given to verify the effectiveness of the proposed strategy.

Suggested Citation

  • Xiao, Wenbin & Cao, Liang & Dong, Guowei & Zhou, Qi, 2019. "Adaptive fuzzy control for pure-feedback systems with full state constraints and unknown nonlinear dead zone," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 354-371.
  • Handle: RePEc:eee:apmaco:v:343:y:2019:i:c:p:354-371
    DOI: 10.1016/j.amc.2018.09.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318307884
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.09.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahmoud, Magdi S. & Almutairi, Naif B., 2016. "Feedback fuzzy control for quantized networked systems with random delays," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 80-97.
    2. Li, Junmin & Yue, Hongyun, 2015. "Adaptive fuzzy tracking control for stochastic nonlinear systems with unknown time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 514-528.
    3. Wenjie Si & Xunde Dong & Feifei Yang, 2017. "Adaptive neural tracking control for nonstrict-feedback stochastic nonlinear time-delay systems with full-state constraints," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(14), pages 3018-3031, October.
    4. Zhang, Yanhui & Liang, Hongjing & Ma, Hui & Zhou, Qi & Yu, Zhandong, 2018. "Distributed adaptive consensus tracking control for nonlinear multi-agent systems with state constraints," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 16-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min, Huifang & Xu, Shengyuan & Yu, Xin & Fei, Shumin & Cui, Guozeng, 2020. "Adaptive Tracking Control for Stochastic Nonlinear Systems with Full-State Constraints and Unknown Covariance Noise," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    2. Wang, Yingchun & Zhang, Jiaxin & Zhang, Huaguang & Xie, Xiangpeng, 2021. "Finite-time adaptive neural control for nonstrict-feedback stochastic nonlinear systems with input delay and output constraints," Applied Mathematics and Computation, Elsevier, vol. 393(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin, Li-Ping & Yu, Bo & Zhao, Lin & Yu, Jinpeng, 2020. "Adaptive fuzzy backstepping control for a two continuous stirred tank reactors process based on dynamic surface control approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    2. Dong, Jiuxiang & Hou, Junteng, 2017. "Output feedback fault-tolerant control by a set-theoretic description of T–S fuzzy systems," Applied Mathematics and Computation, Elsevier, vol. 301(C), pages 117-134.
    3. Cai, Yuliang & Dai, Jing & Zhang, Huaguang & Wang, Yingchun, 2021. "Fixed-time leader-following/containment consensus of nonlinear multi-agent systems based on event-triggered mechanism," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    4. Min, Huifang & Xu, Shengyuan & Yu, Xin & Fei, Shumin & Cui, Guozeng, 2020. "Adaptive Tracking Control for Stochastic Nonlinear Systems with Full-State Constraints and Unknown Covariance Noise," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    5. Liu, Lei & Zhou, Qi & Liang, Hongjing & Wang, Lijie, 2017. "Stability and Stabilization of Nonlinear Switched Systems Under Average Dwell Time," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 77-94.
    6. Chang, Xiao-Heng & Li, Zhi-Min & Xiong, Jun & Wang, Yi-Ming, 2017. "LMI approaches to input and output quantized feedback stabilization of linear systems," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 162-175.
    7. Zhai, Ding & Lu, An-Yang & Dong, Jiuxiang & Zhang, Qing-Ling, 2017. "Stability analysis and state feedback control of continuous-time T–S fuzzy systems via anew switched fuzzy Lyapunov function approach," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 586-599.
    8. Fu, Yingying & Li, Jing & Li, Xiaobo & Wu, Shuiyan, 2023. "Dynamic event-triggered adaptive control for uncertain stochastic nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    9. Wang, Fang & Gao, Yali & Zhou, Chao & Zong, Qun, 2022. "Disturbance observer-based backstepping formation control of multiple quadrotors with asymmetric output error constraints," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    10. Heng Liu & Ye Chen & Guanjun Li & Wei Xiang & Guangkui Xu, 2017. "Adaptive Fuzzy Synchronization of Fractional-Order Chaotic (Hyperchaotic) Systems with Input Saturation and Unknown Parameters," Complexity, Hindawi, vol. 2017, pages 1-16, November.
    11. Zhang, Weijian & Du, Haibo & Chu, Zhaobi, 2022. "Robust discrete-time non-smooth consensus protocol for multi-agent systems via super-twisting algorithm," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    12. Kaviarasan, Boomipalagan & Kwon, Oh-Min & Park, Myeong Jin & Sakthivel, Rathinasamy, 2021. "Stochastic faulty estimator-based non-fragile tracking controller for multi-agent systems with communication delay," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    13. Feng, Hongyan & Xu, Huiling & Xu, Shengyuan & Chen, Weimin, 2019. "Model reference tracking control for spatially interconnected discrete-time systems with interconnected chains," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 50-62.
    14. Basheer, Ambreen & Rehan, Muhammad & Tufail, Muhammad & Razaq, Muhammad Ahsan, 2021. "A novel approach for adaptive H∞ leader-following consensus of higher-order locally Lipschitz multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    15. Xi, Changjiang & Dong, Jiuxiang, 2019. "Adaptive fuzzy guaranteed performance control for uncertain nonlinear systems with event-triggered input," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    16. Wang, Yingchun & Zhang, Jiaxin & Zhang, Huaguang & Xie, Xiangpeng, 2021. "Finite-time adaptive neural control for nonstrict-feedback stochastic nonlinear systems with input delay and output constraints," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    17. Liu, Yanli & Wang, Runzhi & Hao, Li-Ying, 2022. "Adaptive TD control of full-state-constrained nonlinear stochastic switched systems," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    18. Zhang, Jie & Ma, Lifeng & Liu, Yurong & Lyu, Ming & Alsaadi, Fuad E. & Bo, Yuming, 2017. "H∞ and l2−l∞ finite-horizon filtering with randomly occurring gain variations and quantization effects," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 171-187.
    19. Cui, Lili & Zhang, Yong & Wang, Xiaowei & Xie, Xiangpeng, 2021. "Event-triggered distributed self-learning robust tracking control for uncertain nonlinear interconnected systems," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    20. Tan, Yunshun & Yu, Hui, 2024. "Event-triggered adaptive tracking for constrained multi-agent systems with saturated inputs and actuator faults," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 195-215.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:343:y:2019:i:c:p:354-371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.