Event-Triggered iterative learning control for asynchronously switched systems
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2022.127662
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Yingchun & Li, Haifeng & Qiu, Xiaojie & Xie, Xiangpeng, 2020. "Consensus tracking for nonlinear multi-agent systems with unknown disturbance by using model free adaptive iterative learning control," Applied Mathematics and Computation, Elsevier, vol. 365(C).
- Li, Weihua & Zhang, Huaguang & Wang, Wei & Cao, Zhengbao, 2022. "Fully distributed event-triggered time-varying formation control of multi-agent systems subject to mode-switching denial-of-service attacks," Applied Mathematics and Computation, Elsevier, vol. 414(C).
- Zhou, Xingyu & Tian, Yang & Wang, Haoping, 2022. "Neural network state observer-based robust adaptive fault-tolerant quantized iterative learning control for the rigid-flexible coupled robotic systems with unknown time delays," Applied Mathematics and Computation, Elsevier, vol. 430(C).
- Dong, Zeyu & Wang, Xin & Zhang, Xian, 2020. "A nonsingular M-matrix-based global exponential stability analysis of higher-order delayed discrete-time Cohen–Grossberg neural networks," Applied Mathematics and Computation, Elsevier, vol. 385(C).
- Deng, Yalin & Zhang, Huasheng & Dai, Yuzhen & Li, Yuanen, 2022. "Interval stability/stabilization for linear stochastic switched systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 428(C).
- Xue, Yanmei & Ren, Wen & Zheng, Bo-Chao & Han, Jinke, 2022. "Event-triggered adaptive sliding mode control of cyber-physical systems under false data injection attack," Applied Mathematics and Computation, Elsevier, vol. 433(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhu, Lin & Che, Wei-Wei & Jin, Xiao-Zheng, 2022. "Dynamic event-triggered tracking control for model-free networked control systems," Applied Mathematics and Computation, Elsevier, vol. 431(C).
- Zheng, Wei & Zhang, Zhiming & Lam, Hak-Keung & Sun, Fuchun & Wen, Shuhuan, 2023. "LMIs-based exponential stabilization for interval delay systems via congruence transformation: Application in chaotic Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
- Hua, Wentao & Wang, Yantao & Liu, Chunyan, 2024. "New method for global exponential synchronization of multi-link memristive neural networks with three kinds of time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 471(C).
- Ding, Hongfei & Wang, Yudong & Shen, Hao, 2024. "A reinforcement learning integral sliding mode control scheme against lumped disturbances in hot strip rolling," Applied Mathematics and Computation, Elsevier, vol. 465(C).
- Meng, Xianhe & Zhang, Xian & Wang, Yantao, 2023. "Bounded real lemmas and exponential H∞ control for memristor-based neural networks with unbounded time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 66-81.
- Chen, Yonghui & Zhang, Xian & Xue, Yu, 2022. "Global exponential synchronization of high-order quaternion Hopfield neural networks with unbounded distributed delays and time-varying discrete delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 173-189.
- Yao, Dajie & Dou, Chunxia & Xie, Xiangpeng & Hu, Songlin, 2022. "Containment control of non-affine multi-agent systems based on given precision," Applied Mathematics and Computation, Elsevier, vol. 412(C).
- Li, Yuanen & Zhang, Huasheng & Zhang, Tingting & Geng, Han, 2023. "Interval stability/stabilization and H∞ feedback control for linear impulsive stochastic systems," Applied Mathematics and Computation, Elsevier, vol. 437(C).
- Solat, Amirhossein & Gharehpetian, G.B. & Naderi, Mehdi Salay & Anvari-Moghaddam, Amjad, 2024. "On the control of microgrids against cyber-attacks: A review of methods and applications," Applied Energy, Elsevier, vol. 353(PA).
- Zhang, Weijian & Du, Haibo & Chu, Zhaobi, 2022. "Robust discrete-time non-smooth consensus protocol for multi-agent systems via super-twisting algorithm," Applied Mathematics and Computation, Elsevier, vol. 413(C).
- Zhao, Huarong & Peng, Li & Yu, Hongnian, 2022. "Quantized model-free adaptive iterative learning bipartite consensus tracking for unknown nonlinear multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 412(C).
- Xie, Lifei & Cheng, Jun & Wang, Hailing & Wang, Jiange & Hu, Mengjie & Zhou, Zhidong, 2022. "Memory-based event-triggered asynchronous control for semi-Markov switching systems," Applied Mathematics and Computation, Elsevier, vol. 415(C).
- Yang, Liu & Ma, Weijun & Wang, Xin, 2024. "Lagrange stability and passivity in the mean square sense of discrete-time stochastic Markovian switched neural networks with time-varying mixed delays," Applied Mathematics and Computation, Elsevier, vol. 477(C).
- Xue, Yu & Tu, Kairong & Liu, Chunyan & Zhang, Xian, 2024. "Non-fragile extended dissipative synchronization control for uncertain discrete-time neural networks with leakage and unbounded time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
- Chen, Wu-Hua & Sun, Hao & Lu, Xiaomei, 2024. "A variable gain impulsive observer for perturbed Lipschitz nonlinear systems with delayed discrete measurements," Applied Mathematics and Computation, Elsevier, vol. 473(C).
- Wang, Chen & Qi, Yiwen & Tang, Yiwen & Li, Xin & Ji, Ming, 2024. "Robust control with protected feedback information for switched systems under injection attacks," Applied Mathematics and Computation, Elsevier, vol. 475(C).
- Yang, Ni & Gao, Ruiyi & Su, Huan, 2022. "Stability of multi-links complex-valued impulsive stochastic systems with Markovian switching and multiple delays," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
- Zhang, Zhongjie & Yu, Tingting & Zhang, Xian, 2022. "Algebra criteria for global exponential stability of multiple time-varying delay Cohen–Grossberg neural networks," Applied Mathematics and Computation, Elsevier, vol. 435(C).
- Sun, Yuting & Hu, Cheng & Yu, Juan & Shi, Tingting, 2023. "Synchronization of fractional-order reaction-diffusion neural networks via mixed boundary control," Applied Mathematics and Computation, Elsevier, vol. 450(C).
- Wang, Junlan & Wang, Xin & Wang, Yantao & Zhang, Xian, 2021. "Non-reduced order method to global h-stability criteria for proportional delay high-order inertial neural networks," Applied Mathematics and Computation, Elsevier, vol. 407(C).
More about this item
Keywords
Switched systems; Asynchronous switching; Event-triggered iterative learning control; Time and iteration domains;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:440:y:2023:i:c:s0096300322007305. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.