IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v411y2021ics0096300321006135.html
   My bibliography  Save this article

Layered SIRS model of information spread in complex networks

Author

Listed:
  • Zhang, Yuexia
  • Pan, Dawei

Abstract

In complex network research, the infectious disease model is often used to study transmission mechanisms and interference factors of information; consequently, they are essential for the prediction and control of information transmission. The conventional SIRS epidemic model has a wide range of applications and is theoretically mature. However, it does not stratify the nodes in a network, and fails to reflect the characteristics of different nodes. To solve this problem, we propose a layered SIRS information transmission model (L-SIRS) . Depending on the node influence, we assign the nodes in the network to high- and low-influence layers and establish an intra- and inter-layer information transmission mechanism. The transmission threshold and equilibrium point of this model are analyzed theoretically. To reduce the transmission of online public opinions, two kinds of information transmission interference strategies, namely, information blocking and information dredging, are designed to study their influence on information transmission. Finally, combine with practice, the simulation results indicate that the L-SIRS model can more accurately describe network information transmission and both information blocking and information dredging can effectively inhibit the spread of information.

Suggested Citation

  • Zhang, Yuexia & Pan, Dawei, 2021. "Layered SIRS model of information spread in complex networks," Applied Mathematics and Computation, Elsevier, vol. 411(C).
  • Handle: RePEc:eee:apmaco:v:411:y:2021:i:c:s0096300321006135
    DOI: 10.1016/j.amc.2021.126524
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321006135
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126524?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Lijun & Wei, Xiaodan & Zhang, Naimin, 2019. "Global stability of a network-based SIRS epidemic model with nonmonotone incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 587-599.
    2. Wang, Zhishuang & Guo, Quantong & Sun, Shiwen & Xia, Chengyi, 2019. "The impact of awareness diffusion on SIR-like epidemics in multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 134-147.
    3. Wang, Yi & Cao, Jinde & Alofi, Abdulaziz & AL-Mazrooei, Abdullah & Elaiw, Ahmed, 2015. "Revisiting node-based SIR models in complex networks with degree correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 75-88.
    4. Liu, Li & Luo, Xiaofeng & Chang, Lili, 2017. "Vaccination strategies of an SIR pair approximation model with demographics on complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 282-290.
    5. Lahrouz, Aadil & Omari, Lahcen, 2013. "Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 960-968.
    6. Cao, Zhongwei & Feng, Wei & Wen, Xiangdan & Zu, Li & Gao, Jinyao, 2020. "Nontrivial periodic solution of a stochastic seasonal rabies epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    7. Saif, M. Ali, 2019. "Epidemic threshold for the SIRS model on the networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    8. Zhao, Laijun & Cui, Hongxin & Qiu, Xiaoyan & Wang, Xiaoli & Wang, Jiajia, 2013. "SIR rumor spreading model in the new media age," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 995-1003.
    9. Yuan, Xinpeng & Wang, Fang & Xue, Yakui & Liu, Maoxing, 2018. "Global stability of an SIR model with differential infectivity on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 443-456.
    10. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    11. Huo, Jingjing & Zhao, Hongyong, 2016. "Dynamical analysis of a fractional SIR model with birth and death on heterogeneous complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 41-56.
    12. Zelong Yi & Xiaokun Wu & Fan Li, 2018. "Ranking Spreaders in Complex Networks Based on the Most Influential Neighbors," Discrete Dynamics in Nature and Society, Hindawi, vol. 2018, pages 1-6, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chakir, Yassine, 2023. "Global approximate solution of SIR epidemic model with constant vaccination strategy," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    2. Zhu, Hongmiao & Jin, Zhen, 2023. "A dynamics model of knowledge dissemination in a WeChat Group from perspective of duplex networks," Applied Mathematics and Computation, Elsevier, vol. 454(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Jing & Li, Dandan & Tian, Zihao, 2016. "Rumor spreading in online social networks by considering the bipolar social reinforcement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 108-115.
    2. Jia Wang & Zhiping Wang & Ping Yu & Peiwen Wang, 2022. "The SEIR Dynamic Evolutionary Model with Markov Chains in Hyper Networks," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    3. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    4. Hosni, Adil Imad Eddine & Li, Kan & Ahmad, Sadique, 2020. "Analysis of the impact of online social networks addiction on the propagation of rumors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    5. Huyi Wang & Ge Zhang & Tao Chen & Zhiming Li, 2023. "Threshold Analysis of a Stochastic SIRS Epidemic Model with Logistic Birth and Nonlinear Incidence," Mathematics, MDPI, vol. 11(7), pages 1-17, April.
    6. Zhu, Linhe & Liu, Wenshan & Zhang, Zhengdi, 2021. "Interplay between epidemic and information spreading on multiplex networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 268-279.
    7. Shi, Zhenfeng & Zhang, Xinhong & Jiang, Daqing, 2019. "Dynamics of an avian influenza model with half-saturated incidence," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 399-416.
    8. Jia, Pingqi & Wang, Chao & Zhang, Gaoyu & Ma, Jianfeng, 2019. "A rumor spreading model based on two propagation channels in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 342-353.
    9. Wang, Haiying & Moore, Jack Murdoch & Wang, Jun & Small, Michael, 2021. "The distinct roles of initial transmission and retransmission in the persistence of knowledge in complex networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    10. Wei, Xiaodan & Zhao, Xu & Zhou, Wenshu, 2022. "Global stability of a network-based SIS epidemic model with a saturated treatment function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    11. Robert J. Shiller, 2017. "Narrative Economics," American Economic Review, American Economic Association, vol. 107(4), pages 967-1004, April.
    12. Zhiming Li & Zhidong Teng, 2019. "Analysis of uncertain SIS epidemic model with nonlinear incidence and demography," Fuzzy Optimization and Decision Making, Springer, vol. 18(4), pages 475-491, December.
    13. Benazzouz, Meryem & Caraballo, Tomás & El Fatini, Mohamed & Laaribi, Aziz, 2024. "Discontinuous stochastic modeling and discrete numerical approximation for Tuberculosis model with relapse," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    14. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Ahmad, Bashir, 2017. "Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 58-69.
    15. Hussain, Ghulam & Khan, Amir & Zahri, Mostafa & Zaman, Gul, 2022. "Ergodic stationary distribution of stochastic epidemic model for HBV with double saturated incidence rates and vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    16. Mann Manyombe, M.L. & Tsanou, B. & Mbang, J. & Bowong, S., 2017. "A metapopulation model for the population dynamics of anopheles mosquito," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 71-91.
    17. Nwaibeh, E.A. & Chikwendu, C.R., 2023. "A deterministic model of the spread of scam rumor and its numerical simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 111-129.
    18. Huo, Liang’an & Jiang, Jiehui & Gong, Sixing & He, Bing, 2016. "Dynamical behavior of a rumor transmission model with Holling-type II functional response in emergency event," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 228-240.
    19. Fu, Xiaoming, 2019. "On invariant measures and the asymptotic behavior of a stochastic delayed SIRS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1008-1023.
    20. Wang, Ning-Ning & Qiu, Shui-Han & Zhong, Xiao Wen & Di, Zeng-Ru, 2023. "Epidemic thresholds identification of susceptible-infected-recovered model based on the Eigen Microstate," Applied Mathematics and Computation, Elsevier, vol. 449(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:411:y:2021:i:c:s0096300321006135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.