IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v404y2021ics009630032100196x.html
   My bibliography  Save this article

Explaining social events through community evolution on temporal networks

Author

Listed:
  • Li, Huichun
  • Zhang, Xue
  • Zhao, Chengli

Abstract

The social network is closely related to people’s lives. And social events are the products of the human subjective initiative during the evolution of networks. Therefore, there is a close correlation between social events and network evolution. This paper studies the characteristics of network evolution corresponding to social events from the perspective of temporal networks. The change point detection method is applied to capture the “shocks” of social events on the network structure. Then, the patterns of structural changes are analyzed based on the theory of community evolution. Experiments on two cases illustrate that social events are significant milestones to promote the development of social networks. And the mesostructure is the intermediary connecting evolving network and social events.

Suggested Citation

  • Li, Huichun & Zhang, Xue & Zhao, Chengli, 2021. "Explaining social events through community evolution on temporal networks," Applied Mathematics and Computation, Elsevier, vol. 404(C).
  • Handle: RePEc:eee:apmaco:v:404:y:2021:i:c:s009630032100196x
    DOI: 10.1016/j.amc.2021.126148
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630032100196X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benston, George J. & Hartgraves, Al L., 2002. "Enron: what happened and what we can learn from it," Journal of Accounting and Public Policy, Elsevier, vol. 21(2), pages 105-127.
    2. Petter Holme, 2015. "Modern temporal network theory: a colloquium," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(9), pages 1-30, September.
    3. Aaron Clauset & Cristopher Moore & M. E. J. Newman, 2008. "Hierarchical structure and the prediction of missing links in networks," Nature, Nature, vol. 453(7191), pages 98-101, May.
    4. Li, Chao & Wang, Li & Sun, Shiwen & Xia, Chengyi, 2018. "Identification of influential spreaders based on classified neighbors in real-world complex networks," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 512-523.
    5. Wang, Juan & Li, Chao & Xia, Chengyi, 2018. "Improved centrality indicators to characterize the nodal spreading capability in complex networks," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 388-400.
    6. Huang, Qiangjuan & Zhao, Chengli & Zhang, Xue & Yi, Dongyun, 2017. "Locating the source of spreading in temporal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 434-444.
    7. Jian, Qing & Li, Xiaopeng & Wang, Juan & Xia, Chengyi, 2021. "Impact of reputation assortment on tag-mediated altruistic behaviors in the spatial lattice," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    8. Yang, Zhihu & Li, Zhi & Wang, Long, 2020. "Evolution of cooperation in a conformity-driven evolving dynamic social network," Applied Mathematics and Computation, Elsevier, vol. 379(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Peng & Qi, Mingze & Yan, Liang & Duan, Xiaojun, 2024. "Diffusion capacity analysis of complex network based on the cluster distribution," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Ting Wang & Yu Jiang & Jianye Yang & Lei Xing, 2023. "Edge-Based Minimal k -Core Subgraph Search," Mathematics, MDPI, vol. 11(15), pages 1-17, August.
    3. Li, Xianghua & Zhen, Xiyuan & Qi, Xin & Han, Huichun & Zhang, Long & Han, Zhen, 2023. "Dynamic community detection based on graph convolutional networks and contrastive learning," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    4. Han, Weiwei & Zhang, Zhipeng & Sun, Junqing & Xia, Chengyi, 2022. "Role of reputation constraints in the spatial public goods game with second-order reputation evaluation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    5. Koopo Kwon & Jaeryong So, 2023. "Future Smart Logistics Technology Based on Patent Analysis Using Temporal Network," Sustainability, MDPI, vol. 15(10), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Lincheng & Zhao, Xiang & Ge, Bin & Xiao, Weidong & Ruan, Yirun, 2019. "An efficient algorithm for mining a set of influential spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 58-65.
    2. Agryzkov, Taras & Tortosa, Leandro & Vicent, Jose F., 2019. "A variant of the current flow betweenness centrality and its application in urban networks," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 600-615.
    3. Wang, Weiping & Guo, Junjiang & Wang, Zhen & Wang, Hao & Cheng, Jun & Wang, Chunyang & Yuan, Manman & Kurths, Jürgen & Luo, Xiong & Gao, Yang, 2021. "Abnormal flow detection in industrial control network based on deep reinforcement learning," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    4. Keng, Ying Ying & Kwa, Kiam Heong & Ratnavelu, Kurunathan, 2021. "Centrality analysis in a drug network and its application to drug repositioning," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    5. Giacopelli, G. & Migliore, M. & Tegolo, D., 2020. "Graph-theoretical derivation of brain structural connectivity," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    6. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
    7. Wang, Zhishuang & Guo, Quantong & Sun, Shiwen & Xia, Chengyi, 2019. "The impact of awareness diffusion on SIR-like epidemics in multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 134-147.
    8. Curado, Manuel & Tortosa, Leandro & Vicent, Jose F., 2021. "Identifying mobility patterns by means of centrality algorithms in multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    9. da Cunha, Éverton Fernandes & da Fontoura Costa, Luciano, 2022. "On hypercomplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    10. Xu, Paiheng & Zhang, Rong & Deng, Yong, 2018. "A novel visibility graph transformation of time series into weighted networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 201-208.
    11. Zhu, Linhe & Liu, Mengxue & Li, Yimin, 2019. "The dynamics analysis of a rumor propagation model in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 118-137.
    12. Yao, Hongxing & Memon, Bilal Ahmed, 2019. "Network topology of FTSE 100 Index companies: From the perspective of Brexit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1248-1262.
    13. Ma, Xiaoke & Sun, Penggang & Wang, Yu, 2018. "Graph regularized nonnegative matrix factorization for temporal link prediction in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 121-136.
    14. Liu, Wanping & Wu, Xiao & Yang, Wu & Zhu, Xiaofei & Zhong, Shouming, 2019. "Modeling cyber rumor spreading over mobile social networks: A compartment approach," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 214-229.
    15. Bodaghi, Amirhosein & Goliaei, Sama & Salehi, Mostafa, 2019. "The number of followings as an influential factor in rumor spreading," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 167-184.
    16. Anzhi Sheng & Qi Su & Aming Li & Long Wang & Joshua B. Plotkin, 2023. "Constructing temporal networks with bursty activity patterns," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Panayotis Christidis & Álvaro Gomez Losada, 2019. "Email Based Institutional Network Analysis: Applications and Risks," Social Sciences, MDPI, vol. 8(11), pages 1-14, November.
    18. Howieson, Bryan, 2003. "Accounting practice in the new millennium: is accounting education ready to meet the challenge?," The British Accounting Review, Elsevier, vol. 35(2), pages 69-103.
    19. Yao Hongxing & Lu Yunxia, 2017. "Analyzing the Potential Influence of Shanghai Stock Market Based on Link Prediction Method," Journal of Systems Science and Information, De Gruyter, vol. 5(5), pages 446-461, October.
    20. Gergely Tibély & David Sousa-Rodrigues & Péter Pollner & Gergely Palla, 2016. "Comparing the Hierarchy of Keywords in On-Line News Portals," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:404:y:2021:i:c:s009630032100196x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.