IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v178y2024ics0960077923012316.html
   My bibliography  Save this article

Diffusion capacity analysis of complex network based on the cluster distribution

Author

Listed:
  • Chen, Peng
  • Qi, Mingze
  • Yan, Liang
  • Duan, Xiaojun

Abstract

Understanding the influence of structural features on diffusive processes is a significant challenge in network science. Real-world systems often exhibit multiscale structures, in which individuals can be partitioned into densely connected clusters with sparser coupling among neighboring clusters. Such structures hinder the diffusion process across the clusters, leading to the diffusion being trapped within clusters. At the macro scale, diffusion is intimately linked to the size distribution patterns of clusters. This article presents the generalized Herfindahl–Hirschman Index for cluster distribution (GHI-CD), a concept that measures a network’s capacity for diffusion. We provide an analysis of its mathematical properties and give the upper bound of the number of clusters and diffusion sources. Theoretical and simulation results demonstrate that a homogeneous distribution of clusters leads to a lower diffusion capacity. Furthermore, based on community detection, a close correlation between the GHI and the magnitude of diffusion is observed on synthetic and real networks, both of which are considerably impacted by cluster-heterogeneity. This GHI-based method can also track the evolution of diffusion capacity during community evolution. Our results demonstrate how cluster distribution offers a new and complementary perspective for analyzing diffusive dynamics on networks.

Suggested Citation

  • Chen, Peng & Qi, Mingze & Yan, Liang & Duan, Xiaojun, 2024. "Diffusion capacity analysis of complex network based on the cluster distribution," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923012316
    DOI: 10.1016/j.chaos.2023.114329
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923012316
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114329?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Xiaoyan & Liu, Zonghua, 2008. "How community structure influences epidemic spread in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 623-630.
    2. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    3. Flaviano Morone & Hernán A. Makse, 2015. "Correction: Corrigendum: Influence maximization in complex networks through optimal percolation," Nature, Nature, vol. 527(7579), pages 544-544, November.
    4. Tiago A. Schieber & Laura C. Carpi & Panos M. Pardalos & Cristina Masoller & Albert Díaz-Guilera & Martín G. Ravetti, 2023. "Diffusion capacity of single and interconnected networks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Li, Huichun & Zhang, Xue & Zhao, Chengli, 2021. "Explaining social events through community evolution on temporal networks," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    6. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    7. Iacopo Iacopini & Giovanni Petri & Alain Barrat & Vito Latora, 2019. "Simplicial models of social contagion," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    8. Flaviano Morone & Hernán A. Makse, 2015. "Influence maximization in complex networks through optimal percolation," Nature, Nature, vol. 524(7563), pages 65-68, August.
    9. Yang, Jin-Xuan & Zhang, Yun, 2020. "Epidemic spreading of evolving community structure," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    10. Zhu, Xuzhen & Liu, Yuxin & Wang, Shengfeng & Wang, Ruijie & Chen, Xiaolong & Wang, Wei, 2021. "Allocating resources for epidemic spreading on metapopulation networks," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Peng Gang & Wu, Xunlian & Quan, Yining & Miao, Qiguang, 2022. "Influence percolation method for overlapping community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    2. Shang, Jiaxing & Liu, Lianchen & Li, Xin & Xie, Feng & Wu, Cheng, 2015. "Epidemic spreading on complex networks with overlapping and non-overlapping community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 171-182.
    3. Chen, Dandan & Zheng, Muhua & Zhao, Ming & Zhang, Yu, 2018. "A dynamic vaccination strategy to suppress the recurrent epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 108-114.
    4. Shang, Jiaxing & Liu, Lianchen & Li, Xin & Xie, Feng & Wu, Cheng, 2016. "Targeted revision: A learning-based approach for incremental community detection in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 70-85.
    5. Fink, Christian G. & Fullin, Kelly & Gutierrez, Guillermo & Omodt, Nathan & Zinnecker, Sydney & Sprint, Gina & McCulloch, Sean, 2023. "A centrality measure for quantifying spread on weighted, directed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    6. Nie, Yanyi & Li, Wenyao & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Markovian approach to tackle competing pathogens in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    7. Saxena, Chandni & Doja, M.N. & Ahmad, Tanvir, 2018. "Group based centrality for immunization of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 35-47.
    8. Gangwal, Utkarsh & Singh, Mayank & Pandey, Pradumn Kumar & Kamboj, Deepak & Chatterjee, Samrat & Bhatia, Udit, 2022. "Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    9. Kotnis, Bhushan & Kuri, Joy, 2016. "Cost effective campaigning in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 670-681.
    10. Wandelt, Sebastian & Sun, Xiaoqian & Zhang, Anming, 2023. "Towards analyzing the robustness of the Integrated Global Transportation Network Abstraction (IGTNA)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    11. Gong Kai & Kang Li, 2018. "A New K-Shell Decomposition Method for Identifying Influential Spreaders of Epidemics on Community Networks," Journal of Systems Science and Information, De Gruyter, vol. 6(4), pages 366-375, August.
    12. Li, Sheng & Liu, Wenwen & Wu, Ruizi & Li, Junli, 2023. "An adaptive attack model to network controllability," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    13. James Flamino & Alessandro Galeazzi & Stuart Feldman & Michael W. Macy & Brendan Cross & Zhenkun Zhou & Matteo Serafino & Alexandre Bovet & Hernán A. Makse & Boleslaw K. Szymanski, 2023. "Political polarization of news media and influencers on Twitter in the 2016 and 2020 US presidential elections," Nature Human Behaviour, Nature, vol. 7(6), pages 904-916, June.
    14. Li Zeng & Changjun Fan & Chao Chen, 2023. "Leveraging Minimum Nodes for Optimum Key Player Identification in Complex Networks: A Deep Reinforcement Learning Strategy with Structured Reward Shaping," Mathematics, MDPI, vol. 11(17), pages 1-13, August.
    15. Tianle Pu & Li Zeng & Chao Chen, 2024. "Deep Reinforcement Learning for Network Dismantling: A K-Core Based Approach," Mathematics, MDPI, vol. 12(8), pages 1-12, April.
    16. Wu, Rui-Jie & Kong, Yi-Xiu & Di, Zengru & Zhang, Yi-Cheng & Shi, Gui-Yuan, 2022. "Analytical solution to the k-core pruning process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    17. Zhang, Dayong & Men, Hao & Zhang, Zhaoxin, 2024. "Assessing the stability of collaboration networks: A structural cohesion analysis perspective," Journal of Informetrics, Elsevier, vol. 18(1).
    18. Sun, Peng Gang & Che, Wanping & Quan, Yining & Wang, Shuzhen & Miao, Qiguang, 2022. "Random networks are heterogeneous exhibiting a multi-scaling law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    19. Ye, Yucheng & Xu, Shuqi & Mariani, Manuel Sebastian & Lü, Linyuan, 2022. "Forecasting countries' gross domestic product from patent data," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    20. Quan M. Tran & Hien D. Nguyen & Tai Huynh & Kha V. Nguyen & Suong N. Hoang & Vuong T. Pham, 2022. "Measuring the influence and amplification of users on social network with unsupervised behaviors learning and efficient interaction-based knowledge graph," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2919-2945, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923012316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.