IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v161y2022ics0960077922005951.html
   My bibliography  Save this article

Role of reputation constraints in the spatial public goods game with second-order reputation evaluation

Author

Listed:
  • Han, Weiwei
  • Zhang, Zhipeng
  • Sun, Junqing
  • Xia, Chengyi

Abstract

At present, the reputation evaluation problem caused by resource constraints significantly influences group cooperation behavior, and cannot be considered and solved in the traditional game model. In this paper, we consider the evolutionary behavior of a spatial public goods game with constraints on second-order reputation evaluation, which can be characterized by an evaluation variable. First, to achieve constraints on high-reputation individuals, an adaptive threshold adjustment function is introduced to dynamically regulate the individual's image, which is based on the evaluation variable. We discuss the impact of evaluation constraints on group evolutionary behavior under four classical second-order updating rules: shunning, stern judging, simple standing, and image scoring. For shunning and stern judging, the appropriate evaluation constraint maximizes the cooperation level; for the other rules, high cooperative behavior is promoted by a small constraint value. Finally, we also analyze the evolutionary behavior of some mechanisms in two other networks: random and small-world networks. In summary, the current results provide an opportunity to study the evolution of human behavior in a competitive situation and develop an effective mechanism to foster collective cooperation.

Suggested Citation

  • Han, Weiwei & Zhang, Zhipeng & Sun, Junqing & Xia, Chengyi, 2022. "Role of reputation constraints in the spatial public goods game with second-order reputation evaluation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922005951
    DOI: 10.1016/j.chaos.2022.112385
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922005951
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112385?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xiaopeng & Hao, Gang & Zhang, Zhipeng & Xia, Chengyi, 2021. "Evolution of cooperation in heterogeneously stochastic interactions," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Damon Tomlin, 2015. "Rational Constraints and the Evolution of Fairness in the Ultimatum Game," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-17, July.
    3. Liu, Jinzhuo & Meng, Haoran & Wang, Wei & Xie, Zhongwen & Yu, Qian, 2019. "Evolution of cooperation on independent networks: The influence of asymmetric information sharing updating mechanism," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 234-241.
    4. Szolnoki, Attila & Chen, Xiaojie, 2020. "Strategy dependent learning activity in cyclic dominant systems," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    5. Matjaž Perc & Zhen Wang, 2010. "Heterogeneous Aspirations Promote Cooperation in the Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-8, December.
    6. Guo, Hao & Chu, Chen & Shen, Chen & Shi, Lei, 2018. "Reputation-based coevolution of link weights promotes cooperation in spatial prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 265-268.
    7. Francisco C. Santos & Marta D. Santos & Jorge M. Pacheco, 2008. "Social diversity promotes the emergence of cooperation in public goods games," Nature, Nature, vol. 454(7201), pages 213-216, July.
    8. Christoph Hauert & Michael Doebeli, 2004. "Spatial structure often inhibits the evolution of cooperation in the snowdrift game," Nature, Nature, vol. 428(6983), pages 643-646, April.
    9. Li, Huichun & Zhang, Xue & Zhao, Chengli, 2021. "Explaining social events through community evolution on temporal networks," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    10. Zhu, Peican & Wang, Xiaoyu & Jia, Danyang & Guo, Yangming & Li, Shudong & Chu, Chen, 2020. "Investigating the co-evolution of node reputation and edge-strategy in prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    11. Wettergren, Thomas A., 2021. "Replicator dynamics of an N-player snowdrift game with delayed payoffs," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    12. Chu, Chen & Liu, Jinzhuo & Shen, Chen & Jin, Jiahua & Tang, Yunxuan & Shi, Lei, 2017. "Coevolution of game strategy and link weight promotes cooperation in structured population," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 28-32.
    13. Christian Hilbe & Štěpán Šimsa & Krishnendu Chatterjee & Martin A. Nowak, 2018. "Evolution of cooperation in stochastic games," Nature, Nature, vol. 559(7713), pages 246-249, July.
    14. Jian, Qing & Li, Xiaopeng & Wang, Juan & Xia, Chengyi, 2021. "Impact of reputation assortment on tag-mediated altruistic behaviors in the spatial lattice," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    15. Zhu, Peican & Wang, Xinyu & Li, Shudong & Guo, Yangming & Wang, Zhen, 2019. "Investigation of epidemic spreading process on multiplex networks by incorporating fatal properties," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 512-524.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Peipei & Li, Dandan, 2023. "A generalized public goods game model based on Nash bargaining," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    2. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2023. "Group-size dependent synergy in heterogeneous populations," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    3. Bai, Xi & Ye, Ye & Chen, Tong & Xie, Nenggang, 2024. "The evolutionary game of emotions considering the influence of reputation," Applied Mathematics and Computation, Elsevier, vol. 474(C).
    4. Zhang, Lan & Pan, Jianchen & Huang, Changwei, 2023. "Effect of mixed random and directional migration on cooperation in the spatial prisoner’s dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    5. Huang, Changwei & Luo, Yijun & Han, Wenchen, 2023. "Cooperation and synchronization in evolutionary opinion changing rate games," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    6. Hu, Qi & Jin, Tao & Jiang, Yulian & Liu, Xingwen, 2024. "Reputation incentives with public supervision promote cooperation in evolutionary games," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    7. Lu, Shounan & Dai, Jianhua & Zhu, Ge & Guo, Li, 2023. "Investigating the effectiveness of interaction-efficiency-driven strategy updating under progressive-interaction for the evolution of the prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    8. Wang, Jianwei & Xu, Wenshu & Zhang, Xingjian & Zhao, Nianxuan & Yu, Fengyuan, 2023. "Redistribution based on willingness to cooperate promotes cooperation while intensifying equality in heterogeneous populations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Shiqiang & Wang, Juan & Zhao, Dawei & Xia, Chengyi, 2023. "Role of second-order reputation evaluation in the multi-player snowdrift game on scale-free simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    2. Deng, Zheng-Hong & Wang, Zi-Ren & Wang, Huan-Bo & Xu, Lin, 2021. "The evolution of cooperation in multi-games with popularity-driven fitness calculation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    3. Li, Xiaopeng & Hao, Gang & Zhang, Zhipeng & Xia, Chengyi, 2021. "Evolution of cooperation in heterogeneously stochastic interactions," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Huang, Yi Jie & Deng, Zheng Hong & Song, Qun & Wu, Tao & Deng, Zhi Long & Gao, Ming yu, 2019. "The evolution of cooperation in multi-games with aspiration-driven updating rule," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 313-317.
    5. Liu, Chengwei & Wang, Juan & Li, Xiaopeng & Xia, Chengyi, 2020. "The link weight adjustment considering historical strategy promotes the cooperation in the spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    6. Li, Xiaoyu & Jia, Danyang & Niu, Xiaotong & Liu, Chen & Zhu, Peican & Liu, Dujuan & Chu, Chen, 2022. "Ability-based asymmetrical fitness calculation promotes cooperation in spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    7. Jin, Jiahua & Chu, Chen & Shen, Chen & Guo, Hao & Geng, Yini & Jia, Danyang & Shi, Lei, 2018. "Heterogeneous fitness promotes cooperation in the spatial prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 141-146.
    8. Li, Xiaopeng & Han, Weiwei & Yang, Wenjun & Wang, Juan & Xia, Chengyi & Li, Hui-jia & Shi, Yong, 2022. "Impact of resource-based conditional interaction on cooperation in spatial social dilemmas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    9. Bi, Yan & Yang, Hui, 2023. "Based on reputation consistent strategy times promotes cooperation in spatial prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    10. Flávio L Pinheiro & Jorge M Pacheco & Francisco C Santos, 2012. "From Local to Global Dilemmas in Social Networks," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-6, February.
    11. Li, Minlan & Liu, Yan-Ping & Han, Yanyan & Wang, Rui-Wu, 2022. "Environmental heterogeneity unifies the effect of spatial structure on the altruistic cooperation in game-theory paradigms," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    12. Xinrong Yang & Zhenping Geng & Haitao Li, 2023. "Matrix-Based Method for the Analysis and Control of Networked Evolutionary Games: A Survey," Games, MDPI, vol. 14(2), pages 1-13, February.
    13. Lv, Ran & Qian, Jia-Li & Hao, Qing-Yi & Wu, Chao-Yun & Guo, Ning & Ling, Xiang, 2024. "The impact of reputation-based heterogeneous evaluation and learning on cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    14. Deng, Zheng-Hong & Huang, Yi-Jie & Gu, Zhi-Yang & Liu, Dan & Gao, Li, 2018. "Multigames with voluntary participation on interdependent networks and the evolution of cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 151-157.
    15. Guan, Kaixuan & Chen, Yuyou & Zheng, Wanjun & Zeng, Lulu & Ye, Hang, 2022. "Costly signals can facilitate cooperation and punishment in the prisoner’s dilemma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    16. Zheng, Junjun & He, Yujie & Ren, Tianyu & Huang, Yongchao, 2022. "Evolution of cooperation in public goods games with segregated networks and periodic invasion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    17. Zhang, Jing & Li, Zhao & Zhang, Jiqiang & Ma, Lin & Zheng, Guozhong & Chen, Li, 2023. "Emergence of oscillatory cooperation in a population with incomplete information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    18. Li, Jiaqi & Zhang, Jianlei & Liu, Qun, 2024. "Spatial game with multiple interaction patterns in constrained interaction environment: A computational method based on opponent’s ability," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    19. Te Wu & Feng Fu & Long Wang, 2011. "Moving Away from Nasty Encounters Enhances Cooperation in Ecological Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-7, November.
    20. Deng, Lili & Zhang, Xingxing & Wang, Cheng, 2021. "Coevolution of spatial ultimatum game and link weight promotes fairness," Applied Mathematics and Computation, Elsevier, vol. 392(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922005951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.