IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v533y2019ics0378437119312014.html
   My bibliography  Save this article

Generalized Ait-Sahalia-type interest rate model with Poisson jumps and convergence of the numerical approximation

Author

Listed:
  • Deng, Shounian
  • Fei, Chen
  • Fei, Weiyin
  • Mao, Xuerong

Abstract

In this paper, we consider a generalized Ait-Sahalia interest rate model with Poisson jumps in finance. The analytical properties including positivity, boundedness and pathwise asymptotic estimations of the solution to this model are investigated. Moreover, we prove that the Euler–Maruyama (EM) numerical solution converges to the true solution of the model in probability. Finally, we apply the EM solution to compute some financial quantities. A numerical example is provided to demonstrate the effectiveness of our results.

Suggested Citation

  • Deng, Shounian & Fei, Chen & Fei, Weiyin & Mao, Xuerong, 2019. "Generalized Ait-Sahalia-type interest rate model with Poisson jumps and convergence of the numerical approximation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
  • Handle: RePEc:eee:phsmap:v:533:y:2019:i:c:s0378437119312014
    DOI: 10.1016/j.physa.2019.122057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119312014
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Przybyłowicz, Paweł & Szölgyenyi, Michaela, 2021. "Existence, uniqueness, and approximation of solutions of jump-diffusion SDEs with discontinuous drift," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    2. Lord, Gabriel & Wang, Mengchao, 2024. "Convergence of a exponential tamed method for a general interest rate model," Applied Mathematics and Computation, Elsevier, vol. 467(C).
    3. Emmanuel Coffie, 2021. "Delay stochastic interest rate model with jump and strong convergence in Monte Carlo simulations," Papers 2103.07651, arXiv.org, revised Jul 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:533:y:2019:i:c:s0378437119312014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.