Strong convergence for the Euler–Maruyama approximation of stochastic differential equations with discontinuous coefficients
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spl.2017.01.027
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jirô Akahori & Yuri Imamura, 2014.
"On a symmetrization of diffusion processes,"
Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1211-1216, July.
- Jiro Akahori & Yuri Imamura, 2012. "On a Symmetrization of Diffusion Processes," Papers 1206.5983, arXiv.org.
- Chan, K. S. & Stramer, O., 1998. "Weak consistency of the Euler method for numerically solving stochastic differential equations with discontinuous coefficients," Stochastic Processes and their Applications, Elsevier, vol. 76(1), pages 33-44, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Peng, Ling & Kloeden, Peter E., 2021. "Time-consistent portfolio optimization," European Journal of Operational Research, Elsevier, vol. 288(1), pages 183-193.
- Przybyłowicz, Paweł & Szölgyenyi, Michaela, 2021. "Existence, uniqueness, and approximation of solutions of jump-diffusion SDEs with discontinuous drift," Applied Mathematics and Computation, Elsevier, vol. 403(C).
- Gao, Xiangyu & Liu, Yi & Wang, Yanxia & Yang, Hongfu & Yang, Maosong, 2021. "Tamed-Euler method for nonlinear switching diffusion systems with locally Hölder diffusion coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
- Ngo, Hoang Long & Luong, Duc Trong, 2019. "Tamed Euler–Maruyama approximation for stochastic differential equations with locally Hölder continuous diffusion coefficients," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 133-140.
- Ngo, Hoang-Long & Taguchi, Dai, 2019. "On the Euler–Maruyama scheme for SDEs with bounded variation and Hölder continuous coefficients," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 102-112.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yao Tung Huang & Qingshuo Song & Harry Zheng, 2015. "Weak Convergence of Path-Dependent SDEs in Basket CDS Pricing with Contagion Risk," Papers 1506.00082, arXiv.org, revised May 2016.
- Akahori, Jirô & Fan, Jie Yen & Imamura, Yuri, 2023. "On the convergence order of a binary tree approximation of symmetrized diffusion processes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 263-277.
- Lingohr, Daniel & Müller, Gernot, 2019. "Stochastic modeling of intraday photovoltaic power generation," Energy Economics, Elsevier, vol. 81(C), pages 175-186.
- Antoine Lejay & Paolo Pigato, 2019.
"A Threshold Model For Local Volatility: Evidence Of Leverage And Mean Reversion Effects On Historical Data,"
International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-24, June.
- Antoine Lejay & Paolo Pigato, 2017. "A threshold model for local volatility: evidence of leverage and mean reversion effects on historical data," Papers 1712.08329, arXiv.org, revised Feb 2019.
- Antoine Lejay & Paolo Pigato, 2019. "A threshold model for local volatility: evidence of leverage and mean reversion effects on historical data," Post-Print hal-01669082, HAL.
- Ngo, Hoang-Long & Taguchi, Dai, 2019. "On the Euler–Maruyama scheme for SDEs with bounded variation and Hölder continuous coefficients," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 102-112.
- Mark Podolskij & Bezirgen Veliyev & Nakahiro Yoshida, 2018. "Edgeworth expansion for Euler approximation of continuous diffusion processes," CREATES Research Papers 2018-28, Department of Economics and Business Economics, Aarhus University.
- Hiderah Kamal, 2020. "Approximation of Euler–Maruyama for one-dimensional stochastic differential equations involving the maximum process," Monte Carlo Methods and Applications, De Gruyter, vol. 26(1), pages 33-47, March.
- Yuri Imamura & Yuta Ishigaki & Takuya Kawagoe & Toshiki Okumura, 2012. "A Numerical Scheme Based on Semi-Static Hedging Strategy," Papers 1206.2934, arXiv.org, revised Aug 2012.
- Antoine Lejay & Paolo Pigato, 2017. "A threshold model for local volatility: evidence of leverage and mean reversion effects on historical data," Working Papers hal-01669082, HAL.
- Jiro Akahori & Flavia Barsotti & Yuri Imamura, 2017. "The Value of Timing Risk," Papers 1701.05695, arXiv.org.
- Jiro Akahori & Flavia Barsotti & Yuri Imamura, 2018. "Asymptotic Static Hedge via Symmetrization," Papers 1801.04045, arXiv.org.
- Yuji Hishida & Yuta Ishigaki & Toshiki Okumura, 2019. "A Numerical Scheme for Expectations with First Hitting Time to Smooth Boundary," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(4), pages 553-565, December.
More about this item
Keywords
Euler–Maruyama approximation; Strong rate of convergence; Stochastic differential equation; Discontinuous coefficients;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:125:y:2017:i:c:p:55-63. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.