IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v389y2021ics0096300320305142.html
   My bibliography  Save this article

Dynamic event-triggered fault estimation and sliding mode fault-tolerant control for networked control systems with sensor faults

Author

Listed:
  • Wang, Jiaqi
  • Fang, Fang
  • Yi, Xiaojian
  • Liu, Yajuan

Abstract

This paper investigates the problem of fault estimation and sliding mode fault-tolerant control(FTC) for networked control systems with sensor faults under dynamic event-triggered scheme. First, the sensor faults are equivalent to virtual internal system faults in system by filtering, and dynamic event-triggered fault/state observer is designed to estimate the system state and fault at the same time. Therefore, a sliding mode surface under event-triggering is constructed considering system faults and network delay. By the Lyapunov-Krasovskii function, a novel design condition in the form of linear matrix inequality is obtained with H∞ performance to gain observer and controller parameters. In addition, a sliding mode FTC law is constructed to guarantee that the trajectories of system states can be arrived to the sliding surface in a finite time. Finally, two examples with simulation are given to verify the effectiveness of the theoretical method.

Suggested Citation

  • Wang, Jiaqi & Fang, Fang & Yi, Xiaojian & Liu, Yajuan, 2021. "Dynamic event-triggered fault estimation and sliding mode fault-tolerant control for networked control systems with sensor faults," Applied Mathematics and Computation, Elsevier, vol. 389(C).
  • Handle: RePEc:eee:apmaco:v:389:y:2021:i:c:s0096300320305142
    DOI: 10.1016/j.amc.2020.125558
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320305142
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125558?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianhui Wang & Wenli Chen & Zicong Chen & Yunchang Huang & Xing Huang & Wenqiang Wu & Biaotao He & Chunliang Zhang, 2019. "Neural Terminal Sliding-Mode Control for Uncertain Systems with Building Structure Vibration," Complexity, Hindawi, vol. 2019, pages 1-9, April.
    2. Meng, Xin & Zhai, Ding & Fu, Zhumu & Xie, Xiangpeng, 2020. "Adaptive fault tolerant control for a class of switched nonlinear systems with unknown control directions," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    3. Jian, Long & Hu, Jiangping & Wang, Jun & Shi, Kaibo, 2019. "Observer-based output feedback distributed event-triggered control for linear multi-agent systems under general directed graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lü, Shao-Yu & Jin, Xiao-Zheng & Wu, Xiao-Ming & Ding, Li-Jian & Chi, Jing, 2022. "Robust adaptive event-triggered fault-tolerant control for time-varying systems against perturbations and faulty actuators," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    2. Li, Jiahao & Liu, Yu & Yu, Jinyong & Sun, Yiming & Liu, Mengmeng, 2021. "A new result of terminal sliding mode finite-time state and fault estimation for a class of descriptor switched systems," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    3. Hu, Yifan & Liu, Wenhui & Liu, Guobao, 2022. "Adaptive finite‐time event‐triggered control for uncertain nonlinearly parameterized systems with unknown control direction and actuator failures," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    4. Ma, Zheng & Song, Jiasheng & Zhou, Jianping, 2022. "Reliable event-based dissipative filter design for discrete-time system with dynamic quantization and sensor fault," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    5. Wang, Jinling & Liang, Jinling & Zhang, Cheng-Tang & Fan, Dongmei, 2021. "Event-triggered non-fragile control for uncertain positive Roesser model with PDT switching mechanism," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    6. Huang, Tao & Shao, Yiyu & Li, Liwei & Liu, Yajuan & Shen, Mouquan, 2024. "Guaranteed cost event-triggered H∞ control of uncertain linear system via output disturbance observer," Applied Mathematics and Computation, Elsevier, vol. 473(C).
    7. Sader, Malika & Chen, Zengqiang & Liu, Zhongxin & Deng, Chao, 2021. "Distributed robust fault-tolerant consensus control for a class of nonlinear multi-agent systems with intermittent communications," Applied Mathematics and Computation, Elsevier, vol. 403(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Hejun & Gao, Fangzheng & Huang, Jiacai & Wu, Yuqiang, 2021. "Global prescribed-time stabilization via time-scale transformation for switched nonlinear systems subject to switching rational powers," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    2. Yan, Yan & Wu, Libing & Yan, Weijun & Hu, Yuhan & Zhao, Nannan & Chen, Ming, 2022. "Finite-time event-triggered fault-tolerant control for a family of pure-feedback systems," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    3. Yuan, Manman & Zhai, Junyong & Ye, Hui, 2022. "Adaptive output feedback control for a class of switched stochastic nonlinear systems via an event-triggered strategy," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    4. Guiyang Deng & Lianglun Cheng & Baojian Yang, 2019. "Adaptive Optimizing Control for Nonlinear Synchronous Generator System with Uncertain Disturbance," Complexity, Hindawi, vol. 2019, pages 1-6, October.
    5. Kang Xu & Liping Chen & Minwu Wang & António M. Lopes & J. A. Tenreiro Machado & Houzhen Zhai, 2020. "Improved Decentralized Fractional PD Control of Structure Vibrations," Mathematics, MDPI, vol. 8(3), pages 1-13, March.
    6. Cui, Di & Zou, Wencheng & Guo, Jian & Xiang, Zhengrong, 2022. "Neural network-based adaptive finite-time tracking control of switched nonlinear systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 428(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:389:y:2021:i:c:s0096300320305142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.