IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i3p326-d327173.html
   My bibliography  Save this article

Improved Decentralized Fractional PD Control of Structure Vibrations

Author

Listed:
  • Kang Xu

    (College of Civil Engineering, Hefei University of Technology, Hefei 230009, China)

  • Liping Chen

    (School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China)

  • Minwu Wang

    (College of Civil Engineering, Hefei University of Technology, Hefei 230009, China)

  • António M. Lopes

    (UISPA–LAETA/INEGI, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal)

  • J. A. Tenreiro Machado

    (Institute of Engineering, Polytechnic of Porto, Department of Electrical Engineering, R. Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal)

  • Houzhen Zhai

    (The 29th research Institute of CETC, Chengdu 610036, China)

Abstract

This paper presents a new strategy for the control of large displacements in structures under earthquake excitation. Firstly, an improved fractional order proportional-derivative (FOPD) controller is proposed. Secondly, a decentralized strategy is designed by adding a regulator and fault self-regulation to a standard decentralized controller. A new control architecture is obtained by combining the improved FOPD and the decentralized strategy. The parameters of the control system are tuned using an intelligent optimization algorithm. Simulation results demonstrate the performance and reliability of the proposed method.

Suggested Citation

  • Kang Xu & Liping Chen & Minwu Wang & António M. Lopes & J. A. Tenreiro Machado & Houzhen Zhai, 2020. "Improved Decentralized Fractional PD Control of Structure Vibrations," Mathematics, MDPI, vol. 8(3), pages 1-13, March.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:3:p:326-:d:327173
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/3/326/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/3/326/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianhui Wang & Wenli Chen & Zicong Chen & Yunchang Huang & Xing Huang & Wenqiang Wu & Biaotao He & Chunliang Zhang, 2019. "Neural Terminal Sliding-Mode Control for Uncertain Systems with Building Structure Vibration," Complexity, Hindawi, vol. 2019, pages 1-9, April.
    2. Chen, Liping & Wu, Ranchao & He, Yigang & Yin, Lisheng, 2015. "Robust stability and stabilization of fractional-order linear systems with polytopic uncertainties," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 274-284.
    3. Zhang, Lingzhong & Yang, Yongqing & Wang, Fei, 2017. "Projective synchronization of fractional-order memristive neural networks with switching jumps mismatch," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 402-415.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Tianjiao, 2019. "Stabilization of multi-group models with multiple dispersal and stochastic perturbation via feedback control based on discrete-time state observations," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 396-410.
    2. Wang, Fei & Zheng, Zhaowen, 2019. "Quasi-projective synchronization of fractional order chaotic systems under input saturation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    3. Qin, Xiaoli & Wang, Cong & Li, Lixiang & Peng, Haipeng & Yang, Yixian & Ye, Lu, 2018. "Finite-time modified projective synchronization of memristor-based neural network with multi-links and leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 302-315.
    4. Zhenduo Sun & Nengneng Qing & Xiangzhi Kong, 2023. "Asymptotic Hybrid Projection Lag Synchronization of Nonidentical Variable-Order Fractional Complex Dynamic Networks," Mathematics, MDPI, vol. 11(13), pages 1-17, June.
    5. Fei Qi & Yi Chai & Liping Chen & José A. Tenreiro Machado, 2020. "Delay-Dependent and Order-Dependent Guaranteed Cost Control for Uncertain Fractional-Order Delayed Linear Systems," Mathematics, MDPI, vol. 9(1), pages 1-13, December.
    6. Zhang, Hai & Cheng, Yuhong & Zhang, Hongmei & Zhang, Weiwei & Cao, Jinde, 2022. "Hybrid control design for Mittag-Leffler projective synchronization on FOQVNNs with multiple mixed delays and impulsive effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 341-357.
    7. Liu, Dan & Zhao, Song & Luo, Xiaoyuan & Yuan, Yi, 2021. "Synchronization for fractional-order extended Hindmarsh-Rose neuronal models with magneto-acoustical stimulation input," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    8. He, Jin-Man & Pei, Li-Jun, 2023. "Function matrix projection synchronization for the multi-time delayed fractional order memristor-based neural networks with parameter uncertainty," Applied Mathematics and Computation, Elsevier, vol. 454(C).
    9. Li, Xuechen & Wang, Nan & Lu, Jianquan & Alsaadi, Fuad E., 2019. "Pinning outer synchronization of partially coupled dynamical networks with complex inner coupling matrices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 497-509.
    10. Hemmat Esfe, Mohammad & Rostamian, Hossein & Esfandeh, Saeed & Afrand, Masoud, 2018. "Modeling and prediction of rheological behavior of Al2O3-MWCNT/5W50 hybrid nano-lubricant by artificial neural network using experimental data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 625-634.
    11. Wang, Jiaqi & Fang, Fang & Yi, Xiaojian & Liu, Yajuan, 2021. "Dynamic event-triggered fault estimation and sliding mode fault-tolerant control for networked control systems with sensor faults," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    12. Li, Ruoxia & Gao, Xingbao & Cao, Jinde, 2019. "Quasi-state estimation and quasi-synchronization control of quaternion-valued fractional-order fuzzy memristive neural networks: Vector ordering approach," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    13. Guiyang Deng & Lianglun Cheng & Baojian Yang, 2019. "Adaptive Optimizing Control for Nonlinear Synchronous Generator System with Uncertain Disturbance," Complexity, Hindawi, vol. 2019, pages 1-6, October.
    14. Jin-E Zhang, 2017. "Multisynchronization for Coupled Multistable Fractional-Order Neural Networks via Impulsive Control," Complexity, Hindawi, vol. 2017, pages 1-10, August.
    15. Xu, Wei & Zhu, Song & Fang, Xiaoyu & Wang, Wei, 2019. "Adaptive anti-synchronization of memristor-based complex-valued neural networks with time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    16. Chen, Chuan & Li, Lixiang & Peng, Haipeng & Yang, Yixian & Mi, Ling & Qiu, Baolin, 2019. "Fixed-time projective synchronization of memristive neural networks with discrete delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    17. Zhang, Weiwei & Zhang, Hai & Cao, Jinde & Zhang, Hongmei & Chen, Dingyuan, 2020. "Synchronization of delayed fractional-order complex-valued neural networks with leakage delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    18. Guo, Xing & Lu, Jianquan & Alsaedi, Ahmed & Alsaadi, Fuad E., 2018. "Bipartite consensus for multi-agent systems with antagonistic interactions and communication delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 488-497.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:3:p:326-:d:327173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.