IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v386y2020ics0096300320303386.html
   My bibliography  Save this article

Stability analysis and output feedback control for stochastic networked systems with multiple communication delays and nonlinearities using fuzzy control technique

Author

Listed:
  • Zhang, Zhiming
  • Zheng, Wei
  • Lam, H.K.
  • Wen, Shuhuan
  • Sun, Fuchun
  • Xie, Ping

Abstract

This paper addresses the H-infinity Takagi-Sugeno (T-S) fuzzy control for a class of T-S fuzzy discrete networked control systems with random interval communication delays and random sector nonlinearities. Firstly, the T-S fuzzy model is employed to approximate the discrete networked control system and the ℓth-order Rice fading channels model is introduced in the system model. Secondly, the T-S fuzzy dynamic output feedback controller with ℓth-order Rice fading channels output is designed for the T-S fuzzy discrete networked control system. Thirdly, the discrete delay-dependent Lyapunov-Krasovskii functional, stochastic system theory and Bernoulli probability distribution are employed to derive the stability conditions in terms of linear matrix inequalities (LMIs). Compared with previous works, the fading channels in the signal transmission are described clearly by setting the different channels coefficients of the ℓth-order Rice fading channels model. The closed-loop system is exponentially mean-square stable and prescribed H-infinity performance is guaranteed by designing the T-S fuzzy dynamic output feedback controller. The factorizations in the polynomial and the congruence transformation matrices are introduced to solve the LMIs, such that the controller gain matrices are determined. Finally, simulation examples are presented to show the effectiveness of proposed methods.

Suggested Citation

  • Zhang, Zhiming & Zheng, Wei & Lam, H.K. & Wen, Shuhuan & Sun, Fuchun & Xie, Ping, 2020. "Stability analysis and output feedback control for stochastic networked systems with multiple communication delays and nonlinearities using fuzzy control technique," Applied Mathematics and Computation, Elsevier, vol. 386(C).
  • Handle: RePEc:eee:apmaco:v:386:y:2020:i:c:s0096300320303386
    DOI: 10.1016/j.amc.2020.125374
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320303386
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125374?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Sakthivel & M. Sathishkumar & Y. Ren & O.M. Kwon, 2017. "Fault-tolerant sampled-data control of singular networked cascade control systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(10), pages 2079-2090, July.
    2. Shi, Kaibo & Liu, Xinzhi & Zhu, Hong & Zhong, Shouming & Zeng, Yong & Yin, Chun, 2016. "Novel delay-dependent master-slave synchronization criteria of chaotic Lur’e systems with time-varying-delay feedback control," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 137-154.
    3. Wang, Jun & Shi, Kaibo & Huang, Qinzhen & Zhong, Shouming & Zhang, Dian, 2018. "Stochastic switched sampled-data control for synchronization of delayed chaotic neural networks with packet dropout," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 211-230.
    4. Sui, Xin & Yang, Yongqing & Zhang, Shuai, 2019. "Leader-following consensus of multi-agent systems with randomly varying nonlinearities and stochastic disturbances under directed switching topologies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 524-534.
    5. Wang, Yudong & Xia, Jianwei & Wang, Zhen & Shen, Hao, 2020. "Design of a fault-tolerant output-feedback controller for thickness control in cold rolling mills," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    6. Dai, Mingcheng & Huang, Zhengguo & Xia, Jianwei & Meng, Bo & Wang, Jian & Shen, Hao, 2019. "Non-fragile extended dissipativity-based state feedback control for 2-D Markov jump delayed systems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    7. Chen, Jian & Lin, Chong & Chen, Bing & Wang, Qing-Guo, 2017. "Mixed H∞ and passive control for singular systems with time delay via static output feedback," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 244-253.
    8. Baoyu Huo & Shaocheng Tong & Yongming Li, 2013. "Adaptive fuzzy fault-tolerant output feedback control of uncertain nonlinear systems with actuator faults," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(12), pages 2365-2376.
    9. Shi, Kaibo & Wang, Jun & Zhong, Shouming & Zhang, Xiaojun & Liu, Yajuan & Cheng, Jun, 2019. "New reliable nonuniform sampling control for uncertain chaotic neural networks under Markov switching topologies," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 169-193.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harshavarthini, S. & Kwon, O.M. & Lee, S.M., 2022. "Uncertainty and disturbance estimator-based resilient tracking control design for fuzzy semi-Markovian jump systems," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    2. Zheng, Wei & Zhang, Zhiming & Lam, Hak-Keung & Sun, Fuchun & Wen, Shuhuan, 2023. "LMIs-based exponential stabilization for interval delay systems via congruence transformation: Application in chaotic Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    3. Zheng, Wei & Zhang, Zhiming & Sun, Fuchun & Lam, Hak Keung & Wen, Shuhuan, 2022. "Stability analysis and robust controller design for systems with mixed time-delays and stochastic nonlinearity via cone complementarity linearization," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    4. Yu, Peilin & Deng, Feiqi, 2022. "Stabilization analysis of Markovian asynchronous switched systems with input delay and Lévy noise," Applied Mathematics and Computation, Elsevier, vol. 422(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Zeyu & Wang, Xin & Zhang, Xian, 2020. "A nonsingular M-matrix-based global exponential stability analysis of higher-order delayed discrete-time Cohen–Grossberg neural networks," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    2. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    3. Sakthivel, Rathinasamy & Suveetha, V.T. & Nithya, Venkatesh & Sakthivel, Ramalingam, 2020. "Finite-time fault detection filter design for complex systems with multiple stochastic communication and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    4. Cai, Xiao & Zhong, Shouming & Wang, Jun & Shi, Kaibo, 2020. "Robust H∞ control for uncertain delayed T-S fuzzy systems with stochastic packet dropouts," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    5. Katiyar, S.K. & Chand, A. K. B & Saravana Kumar, G., 2019. "A new class of rational cubic spline fractal interpolation function and its constrained aspects," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 319-335.
    6. Xia, Yude & Wang, Jing & Meng, Bo & Chen, Xiangyong, 2020. "Further results on fuzzy sampled-data stabilization of chaotic nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 379(C).
    7. Jian, Long & Hu, Jiangping & Wang, Jun & Shi, Kaibo, 2019. "Distributed event-triggered protocols with Kx-functional observer for leader-following multi-agent systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    8. Li, Xiaoqing & Nguang, Sing Kiong & She, Kun & Cheng, Jun & Zhong, Shouming, 2021. "Resilient controller synthesis for Markovian jump systems with probabilistic faults and gain fluctuations under stochastic sampling operational mechanism," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    9. Jian, Long & Hu, Jiangping & Wang, Jun & Shi, Kaibo, 2019. "Observer-based output feedback distributed event-triggered control for linear multi-agent systems under general directed graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    10. Zhang, Chunmei & Yang, Yinghui, 2020. "Synchronization of stochastic multi-weighted complex networks with Lévy noise based on graph theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    11. Liu, Xinmiao & Xia, Jianwei & Huang, Xia & Shen, Hao, 2020. "Generalized synchronization for coupled Markovian neural networks subject to randomly occurring parameter uncertainties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    12. Li, Min & Huang, Qinzhen, 2019. "Non-fragile passive control for Markovian jump systems with time-varying delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    13. Wang, Xuelian & Xia, Jianwei & Wang, Jing & Wang, Zhen & Wang, Jian, 2020. "Reachable set estimation for Markov jump LPV systems with time delays," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    14. Zhao, Kaihong, 2023. "Local exponential stability of several almost periodic positive solutions for a classical controlled GA-predation ecosystem possessed distributed delays," Applied Mathematics and Computation, Elsevier, vol. 437(C).
    15. Obaid Alshammari & Mourad Kchaou & Houssem Jerbi & Sondess Ben Aoun & Víctor Leiva, 2022. "A Fuzzy Design for a Sliding Mode Observer-Based Control Scheme of Takagi-Sugeno Markov Jump Systems under Imperfect Premise Matching with Bio-Economic and Industrial Applications," Mathematics, MDPI, vol. 10(18), pages 1-28, September.
    16. Wang, Jinling & Liang, Jinling & Zhang, Cheng-Tang & Fan, Dongmei, 2021. "Event-triggered non-fragile control for uncertain positive Roesser model with PDT switching mechanism," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    17. Luo, Jinnan & Tian, Wenhong & Zhong, Shouming & Shi, Kaibo & Chen, Hao & Gu, Xian-Ming & Wang, Wenqin, 2017. "Non-fragile asynchronous H∞ control for uncertain stochastic memory systems with Bernoulli distribution," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 109-128.
    18. Houssem Jerbi & Mourad Kchaou & Attia Boudjemline & Mohamed Amin Regaieg & Sondes Ben Aoun & Ahmed Lakhdar Kouzou, 2021. "H ∞ and Passive Fuzzy Control for Non-Linear Descriptor Systems with Time-Varying Delay and Sensor Faults," Mathematics, MDPI, vol. 9(18), pages 1-25, September.
    19. Duan, Wenyong & Li, Yan & Sun, Yi & Chen, Jian & Yang, Xiaodong, 2020. "Enhanced master–slave synchronization criteria for chaotic Lur’e systems based on time-delayed feedback control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 276-294.
    20. Zlatkovic, Bojana M. & Samardzic, Biljana, 2019. "Multiple spatial limit sets and chaos analysis in MIMO cascade nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 86-93.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:386:y:2020:i:c:s0096300320303386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.