IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v474y2024ics0096300324001474.html
   My bibliography  Save this article

Orthotope-search-expansion-based extended zonotopic Kalman filter design for a discrete-time linear parameter-varying system with a dual-noise term

Author

Listed:
  • Wang, Ziyun
  • Wang, Xianzhe
  • Wang, Yan

Abstract

A novel algorithm utilizing an extended zonotopic Kalman filter based on the orthotope search expansion method is introduced to solve the state estimation problem in discrete-time linear parameter-varying systems when the dual noise of the systems is assumed to be bounded but unknown. First, to identify unknown parameters, an orthotope search expansion method is proposed with a measurement strip constraint. Subsequently, based on the parameter identification orthotopic set, an extended zonotopic Kalman filter algorithm is proposed to derive an estimation interval that wraps the true state of the system. Next, by minimizing the size of the zonotope, the optimal gain matrix for the extended zonotopic Kalman filter algorithm is determined. Finally, the proposed methods are demonstrated for their effectiveness and accuracy through the presentation of two simulation examples.

Suggested Citation

  • Wang, Ziyun & Wang, Xianzhe & Wang, Yan, 2024. "Orthotope-search-expansion-based extended zonotopic Kalman filter design for a discrete-time linear parameter-varying system with a dual-noise term," Applied Mathematics and Computation, Elsevier, vol. 474(C).
  • Handle: RePEc:eee:apmaco:v:474:y:2024:i:c:s0096300324001474
    DOI: 10.1016/j.amc.2024.128675
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324001474
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128675?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mi, Wen & Qian, Tao, 2022. "System identification of hammerstein models by using backward shift algorithm," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    2. Liu, Jianjun & Zhai, Rui & Liu, Yuhan & Li, Wenliang & Wang, Bingzhe & Huang, Liyuan, 2021. "A quasi fractional order gradient descent method with adaptive stepsize and its application in system identification," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    3. Fu, Xiaoyu & Song, Xinmin & Liu, Xiyu & Zhang, Min, 2023. "Distributed state estimation with state equality constraints in the presence of packet dropping," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    4. Li, Meiyu & Liang, Jinling, 2023. "State estimation for 2-D uncertain systems with redundant channels and deception attacks: A set-membership method," Applied Mathematics and Computation, Elsevier, vol. 457(C).
    5. Miranda-Colorado, Roger, 2020. "Parameter identification of conservative Hamiltonian systems using first integrals," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    6. Che, Haochi & Huang, Jun & Zhao, Xudong & Ma, Xiang & Xu, Ning, 2020. "Functional interval observer for discrete-time systems with disturbances," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xin & Wei, Guoliang & Ding, Derui, 2021. "Distributed resilient interval estimation for sensor networks under aperiodic denial-of-service attacks and adaptive event-triggered protocols," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    2. Mei-Qi, Wang & Wen-Li, Ma & En-Li, Chen & Yu-Jian, Chang & Cui-Yan, Wang, 2022. "Principal resonance analysis of piecewise nonlinear oscillator with fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    3. Hoang Vu Dao & Manh Hung Nguyen & Kyoung Kwan Ahn, 2023. "Nonlinear Functional Observer Design for Robot Manipulators," Mathematics, MDPI, vol. 11(19), pages 1-16, September.
    4. Xie, Jiyang & Zhu, Shuqian & Zhang, Dawei, 2022. "A robust distributed secure interval observation approach for uncertain discrete-time positive systems under deception attacks," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    5. Chen, Weilu & Hu, Jun & Wu, Zhihui & Yi, Xiaojian & Liu, Hongjian, 2024. "Protocol-based fault detection for state-saturated systems with sensor nonlinearities and redundant channels," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    6. Han, Xiaohui & Dong, Jianping, 2023. "Applications of fractional gradient descent method with adaptive momentum in BP neural networks," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    7. Chaudhary, Naveed Ishtiaq & Khan, Zeshan Aslam & Kiani, Adiqa Kausar & Raja, Muhammad Asif Zahoor & Chaudhary, Iqra Ishtiaq & Pinto, Carla M.A., 2022. "Design of auxiliary model based normalized fractional gradient algorithm for nonlinear output-error systems," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    8. Huang, Jun & Yang, Lin & Trinh, Hieu, 2021. "Robust control for incremental quadratic constrained nonlinear time-delay systems subject to actuator saturation," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    9. Zhang, Tu & Li, Liwei & Shen, Mouquan, 2021. "Interval observer-based finite-time control for linear parameter-varying systems," Applied Mathematics and Computation, Elsevier, vol. 411(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:474:y:2024:i:c:s0096300324001474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.