IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v423y2022ics0096300322000510.html
   My bibliography  Save this article

State and output feedback local control schemes for nonlinear discrete-time 2-D Roesser systems under saturation, quantization and slope restricted input

Author

Listed:
  • Malik, Saddam Hussain
  • Tufail, Muhammad
  • Rehan, Muhammad
  • Ahmed, Shakeel

Abstract

Control theory of one dimensional (1-D) systems is not directly applicable to two dimensional (2-D) systems due to involvement of complex dynamics in space and time. This paper deals with the control of nonlinear Roesser systems by employing feedback strategies with multiple constraints on the input signal. The input constraints are slope restriction, quantization, and generalized nonlinearities related to actuator overflow. Modeling deficiencies are also handled with the generalized actuator nonlinearities in a robust fashion. Novel results for state and output feedback topologies are furnished. Local stability criteria are developed for both feedback topologies by considering intrinsic nonlinearity as one-sided Lipschitz and generalized nonlinearity in a bounded sector. To the best of our knowledge, the outcomes of present paper are novel for nonlinear Roesser discrete-time systems while considering such nested restrictions on input signal. The results are verified by applying the proposed method on different 2-D practical systems.

Suggested Citation

  • Malik, Saddam Hussain & Tufail, Muhammad & Rehan, Muhammad & Ahmed, Shakeel, 2022. "State and output feedback local control schemes for nonlinear discrete-time 2-D Roesser systems under saturation, quantization and slope restricted input," Applied Mathematics and Computation, Elsevier, vol. 423(C).
  • Handle: RePEc:eee:apmaco:v:423:y:2022:i:c:s0096300322000510
    DOI: 10.1016/j.amc.2022.126965
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322000510
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.126965?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Tae H. & Park, Ju H. & Jung, Hoyoul, 2018. "Network-based H∞ state estimation for neural networks using imperfect measurement," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 205-214.
    2. Tang, Ze & Park, Ju H. & Lee, Tae H., 2016. "Dynamic output-feedback-based H∞ design for networked control systems with multipath packet dropouts," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 121-133.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Xuanxuan & Shen, Mouquan, 2019. "A new approach to feedback feed-forward iterative learning control with random packet dropouts," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 399-412.
    2. Zheng, Wei & Zhang, Zhiming & Sun, Fuchun & Lam, Hak Keung & Wen, Shuhuan, 2022. "Stability analysis and robust controller design for systems with mixed time-delays and stochastic nonlinearity via cone complementarity linearization," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    3. Jiang, Tingting & Zhang, Yuping & Zeng, Yong & Zhong, Shouming & Shi, Kaibo & Cai, Xiao, 2021. "Finite-time analysis for networked predictive control systems with induced time delays and data packet dropouts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    4. Fu, Haijing & Li, Jiahui & Han, Fei & Hou, Nan & Dong, Hongli, 2021. "Outlier-resistant bserver-based H∞ PID control under stochastic communication protocol," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    5. Luo, Jinnan & Tian, Wenhong & Zhong, Shouming & Shi, Kaibo & Chen, Hao & Gu, Xian-Ming & Wang, Wenqin, 2017. "Non-fragile asynchronous H∞ control for uncertain stochastic memory systems with Bernoulli distribution," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 109-128.
    6. Wang, Jing & Liang, Kun & Huang, Xia & Wang, Zhen & Shen, Hao, 2018. "Dissipative fault-tolerant control for nonlinear singular perturbed systems with Markov jumping parameters based on slow state feedback," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 247-262.
    7. Kwon, W. & Koo, Baeyoung & Lee, S.M., 2018. "Novel Lyapunov–Krasovskii functional with delay-dependent matrix for stability of time-varying delay systems," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 149-157.
    8. Jiao, Shiyu & Shen, Hao & Wei, Yunliang & Huang, Xia & Wang, Zhen, 2018. "Further results on dissipativity and stability analysis of Markov jump generalized neural networks with time-varying interval delays," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 338-350.
    9. Wang, Jing & Hu, Xiaohui & Wei, Yunliang & Wang, Zhen, 2019. "Sampled-data synchronization of semi-Markov jump complex dynamical networks subject to generalized dissipativity property," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 853-864.
    10. Zhou, Yu & Pan, Yingnan & Li, Shubo & Liang, Hongjing, 2020. "Event-triggered cooperative containment control for a class of uncertain non-identical networks," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    11. Song, Jia-Sheng & Chang, Xiao-Heng, 2020. "H∞ controller design of networked control systems with a new quantization structure," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    12. Hao, Li-Ying & Yu, Ying & Li, Hui, 2019. "Fault tolerant control of UMV based on sliding mode output feedback," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 433-455.
    13. Ma, Zheng & Song, Jiasheng & Zhou, Jianping, 2022. "Reliable event-based dissipative filter design for discrete-time system with dynamic quantization and sensor fault," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    14. Zeng, Hong-Bing & Zhai, Zheng-Liang & He, Yong & Teo, Kok-Lay & Wang, Wei, 2020. "New insights on stability of sampled-data systems with time-delay," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    15. Tan, Guoqiang & Wang, Zhanshan & Li, Cong, 2020. "H∞ performance state estimation of delayed static neural networks based on an improved proportional-integral estimator," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    16. Li, Xin & Wei, Guoliang & Ding, Derui, 2021. "Distributed resilient interval estimation for sensor networks under aperiodic denial-of-service attacks and adaptive event-triggered protocols," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    17. Song, Xinmin & Duan, Zhenhua & Park, Ju H., 2016. "Linear optimal estimation for discrete-time systems with measurement-delay and packet dropping," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 115-124.
    18. Zhang, Zhi-Ming & He, Yong & Wu, Min & Wang, Qing-Guo, 2017. "Exponential synchronization of chaotic neural networks with time-varying delay via intermittent output feedback approach," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 121-132.
    19. Xiong, Jun & Chang, Xiao-Heng & Yi, Xiaojian, 2018. "Design of robust nonfragile fault detection filter for uncertain dynamic systems with quantization," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 774-788.
    20. Hu, Jun & Li, Jiaxing & Kao, Yonggui & Chen, Dongyan, 2022. "Optimal distributed filtering for nonlinear saturated systems with random access protocol and missing measurements: The uncertain probabilities case," Applied Mathematics and Computation, Elsevier, vol. 418(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:423:y:2022:i:c:s0096300322000510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.