IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v367y2020ics0096300319307751.html
   My bibliography  Save this article

Low-rank tensor train for tensor robust principal component analysis

Author

Listed:
  • Yang, Jing-Hua
  • Zhao, Xi-Le
  • Ji, Teng-Yu
  • Ma, Tian-Hui
  • Huang, Ting-Zhu

Abstract

Recently, tensor train rank, defined by a well-balanced matricization scheme, has been shown the powerful capacity to capture the hidden correlations among different modes of a tensor, leading to great success in tensor completion problem. Most of the high-dimensional data in the real world are more likely to be grossly corrupted with sparse noise. In this paper, based on tensor train rank, we consider a new model for tensor robust principal component analysis which aims to recover a low-rank tensor corrupted by sparse noise. The alternating direction method of multipliers algorithm is developed to solve the proposed model. A tensor augmentation tool called ket augmentation is used to convert lower-order tensors to higher-order tensors to enhance the performance of our method. Experiments of simulated data show the superiority of the proposed method in terms of PSNR and SSIM values. Moreover, experiments of the real rain streaks removal and the real stripe noise removal also illustrate the effectiveness of the proposed method.

Suggested Citation

  • Yang, Jing-Hua & Zhao, Xi-Le & Ji, Teng-Yu & Ma, Tian-Hui & Huang, Ting-Zhu, 2020. "Low-rank tensor train for tensor robust principal component analysis," Applied Mathematics and Computation, Elsevier, vol. 367(C).
  • Handle: RePEc:eee:apmaco:v:367:y:2020:i:c:s0096300319307751
    DOI: 10.1016/j.amc.2019.124783
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319307751
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.124783?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Dali & Chen, YangQuan & Xue, Dingyu, 2015. "Fractional-order total variation image denoising based on proximity algorithm," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 537-545.
    2. Ding, Meng & Huang, Ting-Zhu & Wang, Si & Mei, Jin-Jin & Zhao, Xi-Le, 2019. "Total variation with overlapping group sparsity for deblurring images under Cauchy noise," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 128-147.
    3. Carl Eckart & Gale Young, 1936. "The approximation of one matrix by another of lower rank," Psychometrika, Springer;The Psychometric Society, vol. 1(3), pages 211-218, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Meng & Huang, Ting-Zhu & Ma, Tian-Hui & Zhao, Xi-Le & Yang, Jing-Hua, 2020. "Cauchy noise removal using group-based low-rank prior," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    2. Wu, Tingting & Ng, Michael K. & Zhao, Xi-Le, 2021. "Sparsity reconstruction using nonconvex TGpV-shearlet regularization and constrained projection," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    3. Fanhua Shang & Yuanyuan Liu & Fanjie Shang & Hongying Liu & Lin Kong & Licheng Jiao, 2020. "A Unified Scalable Equivalent Formulation for Schatten Quasi-Norms," Mathematics, MDPI, vol. 8(8), pages 1-19, August.
    4. Wang, Yugang & Huang, Ting-Zhu & Zhao, Xi-Le & Deng, Liang-Jian & Ji, Teng-Yu, 2020. "A convex single image dehazing model via sparse dark channel prior," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    5. Keren Li & Sergey Utyuzhnikov, 2023. "Tensor Train-Based Higher-Order Dynamic Mode Decomposition for Dynamical Systems," Mathematics, MDPI, vol. 11(8), pages 1-14, April.
    6. Karim Ennouri & Slim Smaoui & Mohamed Ali Triki, 2021. "Detection of Urban and Environmental Changes via Remote Sensing," Circular Economy and Sustainability, Springer, vol. 1(4), pages 1423-1437, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sewell, Daniel K., 2018. "Visualizing data through curvilinear representations of matrices," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 255-270.
    2. Jushan Bai & Serena Ng, 2020. "Simpler Proofs for Approximate Factor Models of Large Dimensions," Papers 2008.00254, arXiv.org.
    3. Adele Ravagnani & Fabrizio Lillo & Paola Deriu & Piero Mazzarisi & Francesca Medda & Antonio Russo, 2024. "Dimensionality reduction techniques to support insider trading detection," Papers 2403.00707, arXiv.org, revised May 2024.
    4. Alfredo García-Hiernaux & José Casals & Miguel Jerez, 2012. "Estimating the system order by subspace methods," Computational Statistics, Springer, vol. 27(3), pages 411-425, September.
    5. Mitzi Cubilla‐Montilla & Ana‐Belén Nieto‐Librero & Ma Purificación Galindo‐Villardón & Ma Purificación Vicente Galindo & Isabel‐María Garcia‐Sanchez, 2019. "Are cultural values sufficient to improve stakeholder engagement human and labour rights issues?," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 26(4), pages 938-955, July.
    6. Jos Berge & Henk Kiers, 1993. "An alternating least squares method for the weighted approximation of a symmetric matrix," Psychometrika, Springer;The Psychometric Society, vol. 58(1), pages 115-118, March.
    7. Shimeng Huang & Henry Wolkowicz, 2018. "Low-rank matrix completion using nuclear norm minimization and facial reduction," Journal of Global Optimization, Springer, vol. 72(1), pages 5-26, September.
    8. Antti J. Tanskanen & Jani Lukkarinen & Kari Vatanen, 2016. "Random selection of factors preserves the correlation structure in a linear factor model to a high degree," Papers 1604.05896, arXiv.org, revised Dec 2018.
    9. Jin-Xing Liu & Yong Xu & Chun-Hou Zheng & Yi Wang & Jing-Yu Yang, 2012. "Characteristic Gene Selection via Weighting Principal Components by Singular Values," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-10, July.
    10. Nyamoradi, Nemat & Rodríguez-López, Rosana, 2015. "On boundary value problems for impulsive fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 874-892.
    11. Kargin, V. & Onatski, A., 2008. "Curve forecasting by functional autoregression," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2508-2526, November.
    12. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    13. W. Gibson, 1962. "On the least-squares orthogonalization of an oblique transformation," Psychometrika, Springer;The Psychometric Society, vol. 27(2), pages 193-195, June.
    14. Walter Kristof, 1967. "Orthogonal inter-battery factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 32(2), pages 199-227, June.
    15. Willem E. Saris & Marius de Pijper & Jan Mulder, 1978. "Optimal Procedures for Estimation of Factor Scores," Sociological Methods & Research, , vol. 7(1), pages 85-106, August.
    16. Merola, Giovanni Maria & Chen, Gemai, 2019. "Projection sparse principal component analysis: An efficient least squares method," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 366-382.
    17. Juan Carlos Carrasco Baquero & Verónica Lucía Caballero Serrano & Fernando Romero Cañizares & Daisy Carolina Carrasco López & David Alejandro León Gualán & Rufino Vieira Lanero & Fernando Cobo-Gradín, 2023. "Water Quality Determination Using Soil and Vegetation Communities in the Wetlands of the Andes of Ecuador," Land, MDPI, vol. 12(8), pages 1-18, August.
    18. Naoto Yamashita & Shin-ichi Mayekawa, 2015. "A new biplot procedure with joint classification of objects and variables by fuzzy c-means clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(3), pages 243-266, September.
    19. Johannes Burge & Priyank Jaini, 2017. "Accuracy Maximization Analysis for Sensory-Perceptual Tasks: Computational Improvements, Filter Robustness, and Coding Advantages for Scaled Additive Noise," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-32, February.
    20. Elvin Isufi & Andreas Loukas & Nathanael Perraudin & Geert Leus, 2018. "Forecasting Time Series with VARMA Recursions on Graphs," Papers 1810.08581, arXiv.org, revised Jul 2019.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:367:y:2020:i:c:s0096300319307751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.