IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i8p1809-d1120510.html
   My bibliography  Save this article

Tensor Train-Based Higher-Order Dynamic Mode Decomposition for Dynamical Systems

Author

Listed:
  • Keren Li

    (School of Engineering, University of Manchester, Manchester M13 9PL, UK
    These authors contributed equally to this work.)

  • Sergey Utyuzhnikov

    (School of Engineering, University of Manchester, Manchester M13 9PL, UK
    These authors contributed equally to this work.)

Abstract

Higher-order dynamic mode decomposition (HODMD) has proved to be an efficient tool for the analysis and prediction of complex dynamical systems described by data-driven models. In the present paper, we propose a realization of HODMD that is based on the low-rank tensor decomposition of potentially high-dimensional datasets. It is used to compute the HODMD modes and eigenvalues to effectively reduce the computational complexity of the problem. The proposed extension also provides a more efficient realization of the ordinary dynamic mode decomposition with the use of the tensor-train decomposition. The high efficiency of the tensor-train-based HODMD (TT-HODMD) is illustrated by a few examples, including forecasting the load of a power system, which provides comparisons between TT-HODMD and HODMD with respect to the computing time and accuracy. The developed algorithm can be effectively used for the prediction of high-dimensional dynamical systems.

Suggested Citation

  • Keren Li & Sergey Utyuzhnikov, 2023. "Tensor Train-Based Higher-Order Dynamic Mode Decomposition for Dynamical Systems," Mathematics, MDPI, vol. 11(8), pages 1-14, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:8:p:1809-:d:1120510
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/8/1809/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/8/1809/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Jing-Hua & Zhao, Xi-Le & Ji, Teng-Yu & Ma, Tian-Hui & Huang, Ting-Zhu, 2020. "Low-rank tensor train for tensor robust principal component analysis," Applied Mathematics and Computation, Elsevier, vol. 367(C).
    2. Hong, Tao & Pinson, Pierre & Fan, Shu, 2014. "Global Energy Forecasting Competition 2012," International Journal of Forecasting, Elsevier, vol. 30(2), pages 357-363.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Keren Li & Sergey Utyuzhnikov, 2024. "Prediction of wind energy with the use of tensor‐train based higher order dynamic mode decomposition," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2434-2447, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Ding, Meng & Huang, Ting-Zhu & Ma, Tian-Hui & Zhao, Xi-Le & Yang, Jing-Hua, 2020. "Cauchy noise removal using group-based low-rank prior," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    3. Rostami-Tabar, Bahman & Ali, Mohammad M. & Hong, Tao & Hyndman, Rob J. & Porter, Michael D. & Syntetos, Aris, 2022. "Forecasting for social good," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1245-1257.
    4. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    5. Norouzi, Mohammadali & Aghaei, Jamshid & Niknam, Taher & Alipour, Mohammadali & Pirouzi, Sasan & Lehtonen, Matti, 2023. "Risk-averse and flexi-intelligent scheduling of microgrids based on hybrid Boltzmann machines and cascade neural network forecasting," Applied Energy, Elsevier, vol. 348(C).
    6. Severinsen, A. & Myrland, Ø., 2022. "ShinyRBase: Near real-time energy saving models using reactive programming," Applied Energy, Elsevier, vol. 325(C).
    7. Bojer, Casper Solheim & Meldgaard, Jens Peder, 2021. "Kaggle forecasting competitions: An overlooked learning opportunity," International Journal of Forecasting, Elsevier, vol. 37(2), pages 587-603.
    8. Manisha Sawant & Rupali Patil & Tanmay Shikhare & Shreyas Nagle & Sakshi Chavan & Shivang Negi & Neeraj Dhanraj Bokde, 2022. "A Selective Review on Recent Advancements in Long, Short and Ultra-Short-Term Wind Power Prediction," Energies, MDPI, vol. 15(21), pages 1-24, October.
    9. Chen, Fuhao & Yan, Jie & Liu, Yongqian & Yan, Yamin & Tjernberg, Lina Bertling, 2024. "A novel meta-learning approach for few-shot short-term wind power forecasting," Applied Energy, Elsevier, vol. 362(C).
    10. Ruhnau, Oliver & Hennig, Patrick & Madlener, Reinhard, 2020. "Economic implications of forecasting electricity generation from variable renewable energy sources," Renewable Energy, Elsevier, vol. 161(C), pages 1318-1327.
    11. Voyant, Cyril & Notton, Gilles & Duchaud, Jean-Laurent & Gutiérrez, Luis Antonio García & Bright, Jamie M. & Yang, Dazhi, 2022. "Benchmarks for solar radiation time series forecasting," Renewable Energy, Elsevier, vol. 191(C), pages 747-762.
    12. Ivana Kiprijanovska & Simon Stankoski & Igor Ilievski & Slobodan Jovanovski & Matjaž Gams & Hristijan Gjoreski, 2020. "HousEEC: Day-Ahead Household Electrical Energy Consumption Forecasting Using Deep Learning," Energies, MDPI, vol. 13(10), pages 1-29, May.
    13. Luo, Jian & Hong, Tao & Gao, Zheming & Fang, Shu-Cherng, 2023. "A robust support vector regression model for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 1005-1020.
    14. Roach, Cameron, 2019. "Reconciled boosted models for GEFCom2017 hierarchical probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1439-1450.
    15. Wang, Yugang & Huang, Ting-Zhu & Zhao, Xi-Le & Deng, Liang-Jian & Ji, Teng-Yu, 2020. "A convex single image dehazing model via sparse dark channel prior," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    16. Jian Luo & Yukai Zheng & Tao Hong & An Luo & Xueqi Yang, 2024. "Fuzzy support vector regressions for short-term load forecasting," Fuzzy Optimization and Decision Making, Springer, vol. 23(3), pages 363-385, September.
    17. Massidda, Luca & Marrocu, Marino, 2023. "Total and thermal load forecasting in residential communities through probabilistic methods and causal machine learning," Applied Energy, Elsevier, vol. 351(C).
    18. Mangalova, Ekaterina & Shesterneva, Olesya, 2016. "K-nearest neighbors for GEFCom2014 probabilistic wind power forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1067-1073.
    19. Rodrigo A. de Marcos & Derek W. Bunn & Antonio Bello & Javier Reneses, 2020. "Short-Term Electricity Price Forecasting with Recurrent Regimes and Structural Breaks," Energies, MDPI, vol. 13(20), pages 1-14, October.
    20. Jonathan Roth & Jayashree Chadalawada & Rishee K. Jain & Clayton Miller, 2021. "Uncertainty Matters: Bayesian Probabilistic Forecasting for Residential Smart Meter Prediction, Segmentation, and Behavioral Measurement and Verification," Energies, MDPI, vol. 14(5), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:8:p:1809-:d:1120510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.