IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v483y2024ics0096300324004417.html
   My bibliography  Save this article

Tensor robust principal component analysis with total generalized variation for high-dimensional data recovery

Author

Listed:
  • Xu, Zhi
  • Yang, Jing-Hua
  • Wang, Chuan-long
  • Wang, Fusheng
  • Yan, Xi-hong

Abstract

In the past few years, tensor robust principal component analysis (TRPCA) which is based on tensor singular value decomposition (t-SVD) has got a lot of attention in recovering low-rank tensor corrupted by sparse noise. However, most TRPCA methods only consider the global structure of the image, ignoring the local details and sharp edge information of the image, resulting in the unsatisfactory restoration results. In this paper, to fully preserve the local details and edge information of the image, we propose a new TRPCA method by introducing a total generalized variation (TGV) regularization. The proposed method can simultaneously explore the global and local prior information of high-dimensional data. Specifically, the tensor nuclear norm (TNN) is employed to develop the global structure feature. Moreover, we introduce the TGV, a higher-order generalization of total variation (TV), to preserve the local details and edges of the underlying image. Subsequently, the alternating direction method of multiplier (ADMM) algorithm is introduced to solve the proposed model. Sufficient experiments on color images and videos have demonstrated that our method is superior to other comparison methods.

Suggested Citation

  • Xu, Zhi & Yang, Jing-Hua & Wang, Chuan-long & Wang, Fusheng & Yan, Xi-hong, 2024. "Tensor robust principal component analysis with total generalized variation for high-dimensional data recovery," Applied Mathematics and Computation, Elsevier, vol. 483(C).
  • Handle: RePEc:eee:apmaco:v:483:y:2024:i:c:s0096300324004417
    DOI: 10.1016/j.amc.2024.128980
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324004417
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128980?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Jing-Hua & Zhao, Xi-Le & Ji, Teng-Yu & Ma, Tian-Hui & Huang, Ting-Zhu, 2020. "Low-rank tensor train for tensor robust principal component analysis," Applied Mathematics and Computation, Elsevier, vol. 367(C).
    2. Jushan Bai & Junlong Feng, 2019. "Robust Principal Component Analysis with Non-Sparse Errors," Papers 1902.08735, arXiv.org, revised Nov 2019.
    3. Zhang, Shuang & Han, Le, 2023. "Robust tensor recovery with nonconvex and nonsmooth regularization," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    4. Liao, Shenghai & Fu, Shujun & Li, Yuliang & Han, Hongbin, 2023. "Image inpainting using non-convex low rank decomposition and multidirectional search," Applied Mathematics and Computation, Elsevier, vol. 452(C).
    5. Shama, Mu-Ga & Huang, Ting-Zhu & Liu, Jun & Wang, Si, 2016. "A convex total generalized variation regularized model for multiplicative noise and blur removal," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 109-121.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Tingting & Ng, Michael K. & Zhao, Xi-Le, 2021. "Sparsity reconstruction using nonconvex TGpV-shearlet regularization and constrained projection," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    2. Ding, Meng & Huang, Ting-Zhu & Ma, Tian-Hui & Zhao, Xi-Le & Yang, Jing-Hua, 2020. "Cauchy noise removal using group-based low-rank prior," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    3. Trucíos, Carlos & Mazzeu, João H.G. & Hotta, Luiz K. & Valls Pereira, Pedro L. & Hallin, Marc, 2021. "Robustness and the general dynamic factor model with infinite-dimensional space: Identification, estimation, and forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1520-1534.
    4. Laura Girometti & Martin Huska & Alessandro Lanza & Serena Morigi, 2024. "Convex Predictor–Nonconvex Corrector Optimization Strategy with Application to Signal Decomposition," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1286-1325, September.
    5. Wang, Yugang & Huang, Ting-Zhu & Zhao, Xi-Le & Deng, Liang-Jian & Ji, Teng-Yu, 2020. "A convex single image dehazing model via sparse dark channel prior," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    6. Fanhua Shang & Yuanyuan Liu & Fanjie Shang & Hongying Liu & Lin Kong & Licheng Jiao, 2020. "A Unified Scalable Equivalent Formulation for Schatten Quasi-Norms," Mathematics, MDPI, vol. 8(8), pages 1-19, August.
    7. Sedigheh Mohamadi & Saad Sh. Sammen & Fatemeh Panahi & Mohammad Ehteram & Ozgur Kisi & Amir Mosavi & Ali Najah Ahmed & Ahmed El-Shafie & Nadhir Al-Ansari, 2020. "Zoning map for drought prediction using integrated machine learning models with a nomadic people optimization algorithm," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 537-579, October.
    8. A. H. Bentbib & A. El Hachimi & K. Jbilou & A. Ratnani, 2022. "A Tensor Regularized Nuclear Norm Method for Image and Video Completion," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 401-425, February.
    9. Li, Xiao & Meng, Xiaoying & Xiong, Bo, 2022. "A fractional variational image denoising model with two-component regularization terms," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    10. Belloni, Alexandre & Chen, Mingli & Madrid Padilla, Oscar Hernan & Wang, Zixuan (Kevin), 2019. "High Dimensional Latent Panel Quantile Regression with an Application to Asset Pricing," The Warwick Economics Research Paper Series (TWERPS) 1230, University of Warwick, Department of Economics.
    11. Karim Ennouri & Slim Smaoui & Mohamed Ali Triki, 2021. "Detection of Urban and Environmental Changes via Remote Sensing," Circular Economy and Sustainability, Springer, vol. 1(4), pages 1423-1437, December.
    12. Zhao, Xueqing & Huang, Keke & Wang, Xiaoming & Shi, Meihong & Zhu, Xinjuan & Gao, Quanli & Yu, Zhaofei, 2018. "Reaction–diffusion equation based image restoration," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 588-606.
    13. Keren Li & Sergey Utyuzhnikov, 2023. "Tensor Train-Based Higher-Order Dynamic Mode Decomposition for Dynamical Systems," Mathematics, MDPI, vol. 11(8), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:483:y:2024:i:c:s0096300324004417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.