IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v138y2020ics0960077920302629.html
   My bibliography  Save this article

Stability preserving NSFD scheme for a general virus dynamics model with antibody and cell-mediated responses

Author

Listed:
  • Elaiw, A.M.
  • Alshaikh, M.A.

Abstract

Nonstandard finite difference (NSFD) is one of the efficient computational methods that has been used to discretize various viral infection models. In this paper we present a NSFD scheme for a virus dynamics model with antibody and cell-mediated responses. Two types of infected cells are incorporated into the model, namely latently infected and actively infected cells. The incidence rate of infection as well as the production and removal rates of all compartments are modeled by general nonlinear functions. We prove that NSFD preserves the positivity and boundedness of the solutions of the model. Based on four threshold parameters the existence of five equilibria is established. We perform global stability of all equilibria of the model by using Lyapunov approach. Numerical simulations are carried out to illustrate our theoretical results. A comparison between NSFD method and Runge-Kutta method is presented.

Suggested Citation

  • Elaiw, A.M. & Alshaikh, M.A., 2020. "Stability preserving NSFD scheme for a general virus dynamics model with antibody and cell-mediated responses," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920302629
    DOI: 10.1016/j.chaos.2020.109862
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920302629
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109862?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elaiw, A.M. & Hobiny, A.D. & Al Agha, A.D., 2020. "Global dynamics of reaction-diffusion oncolytic M1 virotherapy with immune response," Applied Mathematics and Computation, Elsevier, vol. 367(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pasha, Syed Ahmed & Nawaz, Yasir & Arif, Muhammad Shoaib, 2023. "On the nonstandard finite difference method for reaction–diffusion models," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elaiw, A.M. & Al Agha, A.D., 2021. "Global dynamics of SARS-CoV-2/cancer model with immune responses," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    2. Kumar, Pushpendra & Erturk, Vedat Suat & Yusuf, Abdullahi & Kumar, Sunil, 2021. "Fractional time-delay mathematical modeling of Oncolytic Virotherapy," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Younoussi, Majda El & Hajhouji, Zakaria & Hattaf, Khalid & Yousfi, Noura, 2022. "Dynamics of a reaction-diffusion fractional-order model for M1 oncolytic virotherapy with CTL immune response," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    4. Mittal, R.C. & Goel, Rohit & Ahlawat, Neha, 2021. "An Efficient Numerical Simulation of a Reaction-Diffusion Malaria Infection Model using B-splines Collocation," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    5. Ahmed Elaiw & Afnan Al Agha, 2020. "Global Analysis of a Reaction-Diffusion Within-Host Malaria Infection Model with Adaptive Immune Response," Mathematics, MDPI, vol. 8(4), pages 1-32, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920302629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.