Stability preserving NSFD scheme for a general virus dynamics model with antibody and cell-mediated responses
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2020.109862
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Elaiw, A.M. & Hobiny, A.D. & Al Agha, A.D., 2020. "Global dynamics of reaction-diffusion oncolytic M1 virotherapy with immune response," Applied Mathematics and Computation, Elsevier, vol. 367(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Pasha, Syed Ahmed & Nawaz, Yasir & Arif, Muhammad Shoaib, 2023. "On the nonstandard finite difference method for reaction–diffusion models," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mittal, R.C. & Goel, Rohit & Ahlawat, Neha, 2021. "An Efficient Numerical Simulation of a Reaction-Diffusion Malaria Infection Model using B-splines Collocation," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
- Elaiw, A.M. & Al Agha, A.D., 2021. "Global dynamics of SARS-CoV-2/cancer model with immune responses," Applied Mathematics and Computation, Elsevier, vol. 408(C).
- Kumar, Pushpendra & Erturk, Vedat Suat & Yusuf, Abdullahi & Kumar, Sunil, 2021. "Fractional time-delay mathematical modeling of Oncolytic Virotherapy," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
- Ahmed Elaiw & Afnan Al Agha, 2020. "Global Analysis of a Reaction-Diffusion Within-Host Malaria Infection Model with Adaptive Immune Response," Mathematics, MDPI, vol. 8(4), pages 1-32, April.
- Younoussi, Majda El & Hajhouji, Zakaria & Hattaf, Khalid & Yousfi, Noura, 2022. "Dynamics of a reaction-diffusion fractional-order model for M1 oncolytic virotherapy with CTL immune response," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
More about this item
Keywords
Nonstandard finite difference; Viral infection; Global stability; Immune response; Discrete-time model; Lyapunov function;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920302629. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.