IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v348y2019icp413-424.html
   My bibliography  Save this article

Stability analysis of split-step θ-Milstein method for a class of n-dimensional stochastic differential equations

Author

Listed:
  • Ahmadian, D.
  • Farkhondeh Rouz, O.
  • Ballestra, L.V.

Abstract

In this paper, we introduce a split-step theta Milstein (SSTM) method for n-dimensional stochastic delay differential equations (SDDEs). The exponential mean-square stability of the numerical solutions is analyzed, and in accordance with previous findings, we prove that the method is exponentially mean-square stable if the employed time-step is smaller than a given and easily computable upper bound. In particular, according to our investigation, larger time-steps can be used in the case θ∈(12,1] than in the case θ∈[0,12]. Numerical results are presented which reveal that the SSTM method is conditionally mean-square stable and that in the case θ∈(12,1] the interval of time-steps for which the SSTM method is theoretically shown to be mean-square stable is significantly larger than in the case θ∈[0,12]. It is worth mentioning that the SSTM method has never been employed or analyzed for the numerical approximation of SDDEs, at least to the very best of our knowledge.

Suggested Citation

  • Ahmadian, D. & Farkhondeh Rouz, O. & Ballestra, L.V., 2019. "Stability analysis of split-step θ-Milstein method for a class of n-dimensional stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 413-424.
  • Handle: RePEc:eee:apmaco:v:348:y:2019:i:c:p:413-424
    DOI: 10.1016/j.amc.2018.10.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318309068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.10.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kahl Christian & Schurz Henri, 2006. "Balanced Milstein Methods for Ordinary SDEs," Monte Carlo Methods and Applications, De Gruyter, vol. 12(2), pages 143-170, April.
    2. Li, Xiuping & Cao, Wanrong, 2015. "On mean-square stability of two-step Maruyama methods for nonlinear neutral stochastic delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 373-381.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weng, Lihui & Liu, Wei, 2019. "Invariant measures of the Milstein method for stochastic differential equations with commutative noise," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 169-176.
    2. Xiaoling Wang & Xiaofei Guan & Pei Yin, 2020. "A New Explicit Magnus Expansion for Nonlinear Stochastic Differential Equations," Mathematics, MDPI, vol. 8(2), pages 1-17, February.
    3. Zhenyu Wang & Qiang Ma & Xiaohua Ding, 2020. "Simulating Stochastic Differential Equations with Conserved Quantities by Improved Explicit Stochastic Runge–Kutta Methods," Mathematics, MDPI, vol. 8(12), pages 1-15, December.
    4. Tan, Jianguo & Chen, Yang & Men, Weiwei & Guo, Yongfeng, 2021. "Positivity and convergence of the balanced implicit method for the nonlinear jump-extended CIR model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 195-210.
    5. Nikolaos Halidias, 2016. "On construction of boundary preserving numerical schemes," Papers 1601.07864, arXiv.org, revised Feb 2016.
    6. Mo, Haoyi & Deng, Feiqi & Zhang, Chaolong, 2017. "Exponential stability of the split-step θ-method for neutral stochastic delay differential equations with jumps," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 85-95.
    7. Benjamin Jourdain & Mohamed Sbai, 2013. "High order discretization schemes for stochastic volatility models," Post-Print hal-00409861, HAL.
    8. Kang, Ting & Li, Qiang & Zhang, Qimin, 2019. "Numerical analysis of the balanced implicit method for stochastic age-dependent capital system with poisson jumps," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 166-177.
    9. Renata Rendek, 2013. "Modeling Diversified Equity Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 23, July-Dece.
    10. Rathinasamy, A. & Narayanasamy, J., 2019. "Mean square stability and almost sure exponential stability of two step Maruyama methods of stochastic delay Hopfield neural networks," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 126-152.
    11. Sun, Xianming & Gan, Siqing & Vanmaele, Michèle, 2015. "Analytical approximation for distorted expectations," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 246-252.
    12. Li, Yan & Zhang, Qimin, 2020. "The balanced implicit method of preserving positivity for the stochastic SIQS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    13. Xianming Sun & Siqing Gan, 2014. "An Efficient Semi-Analytical Simulation for the Heston Model," Computational Economics, Springer;Society for Computational Economics, vol. 43(4), pages 433-445, April.
    14. Haoyi Mo & Xueyan Zhao & Feiqi Deng, 2017. "Exponential mean-square stability of the θ-method for neutral stochastic delay differential equations with jumps," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(3), pages 462-470, February.
    15. Halidias Nikolaos, 2016. "On the construction of boundary preserving numerical schemes," Monte Carlo Methods and Applications, De Gruyter, vol. 22(4), pages 277-289, December.
    16. Nikolaos Halidias & Ioannis Stamatiou, 2015. "Approximating explicitly the mean reverting CEV process," Papers 1502.03018, arXiv.org, revised May 2015.
    17. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    18. H. A. Mardones & C. M. Mora, 2020. "First-Order Weak Balanced Schemes for Stochastic Differential Equations," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 833-852, June.
    19. Eckhard Platen & Renata Rendek, 2009. "Exact Scenario Simulation for Selected Multi-dimensional Stochastic Processes," Research Paper Series 259, Quantitative Finance Research Centre, University of Technology, Sydney.
    20. Li, Min & Huang, Chengming, 2020. "Projected Euler-Maruyama method for stochastic delay differential equations under a global monotonicity condition," Applied Mathematics and Computation, Elsevier, vol. 366(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:348:y:2019:i:c:p:413-424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.