IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v315y2017icp85-95.html
   My bibliography  Save this article

Exponential stability of the split-step θ-method for neutral stochastic delay differential equations with jumps

Author

Listed:
  • Mo, Haoyi
  • Deng, Feiqi
  • Zhang, Chaolong

Abstract

The exponential mean-square stability of the split-step θ-method for neutral stochastic delay differential equations (NSDDEs) with jumps is considered. New conditions for jumps are proposed to ensure the exponential mean-square stability of the trivial solution. If the drift coefficient satisfies the linear growth condition, it is shown that the split-step θ-method can reproduce the exponential mean-square stability of the trivial solution for the constrained stepsize. Then by applying the Chebyshev inequality and the Borel–Cantelli lemma, the almost sure exponential stability of both the trivial solution and the numerical solution can be obtained. Since split-step θ-method covers Euler–Maruyama (EM) method and split-step backward Euler (SSBE) method, the conclusions are valid for these two methods. Moreover, they can adapt to the NSDDEs and the SDDEs with jumps. Finally, a numerical example illustrates the effectiveness of the theoretical results.

Suggested Citation

  • Mo, Haoyi & Deng, Feiqi & Zhang, Chaolong, 2017. "Exponential stability of the split-step θ-method for neutral stochastic delay differential equations with jumps," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 85-95.
  • Handle: RePEc:eee:apmaco:v:315:y:2017:i:c:p:85-95
    DOI: 10.1016/j.amc.2017.06.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317304472
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.06.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xiuping & Cao, Wanrong, 2015. "On mean-square stability of two-step Maruyama methods for nonlinear neutral stochastic delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 373-381.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wan, Fangzhe & Hu, Po & Chen, Huabin, 2020. "Stability analysis of neutral stochastic differential delay equations driven by Lévy noises," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    2. Li, Guangjie & Yang, Qigui, 2021. "Stability analysis of the θ-method for hybrid neutral stochastic functional differential equations with jumps," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenyu Wang & Qiang Ma & Xiaohua Ding, 2020. "Simulating Stochastic Differential Equations with Conserved Quantities by Improved Explicit Stochastic Runge–Kutta Methods," Mathematics, MDPI, vol. 8(12), pages 1-15, December.
    2. Rathinasamy, A. & Narayanasamy, J., 2019. "Mean square stability and almost sure exponential stability of two step Maruyama methods of stochastic delay Hopfield neural networks," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 126-152.
    3. Haoyi Mo & Xueyan Zhao & Feiqi Deng, 2017. "Exponential mean-square stability of the θ-method for neutral stochastic delay differential equations with jumps," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(3), pages 462-470, February.
    4. Li, Min & Huang, Chengming, 2020. "Projected Euler-Maruyama method for stochastic delay differential equations under a global monotonicity condition," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    5. Ahmadian, D. & Farkhondeh Rouz, O. & Ballestra, L.V., 2019. "Stability analysis of split-step θ-Milstein method for a class of n-dimensional stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 413-424.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:315:y:2017:i:c:p:85-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.