IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v347y2019icp265-281.html
   My bibliography  Save this article

Bifurcation analysis of two disc dynamos with viscous friction and multiple time delays

Author

Listed:
  • Wei, Zhouchao
  • Zhu, Bin
  • Yang, Jing
  • Perc, Matjaž
  • Slavinec, Mitja

Abstract

The impact of multiple time delays on the dynamics of two disc dynamos with viscous friction is studied in this paper. We consider the stability of equilibrium states for different delay values, and determine the location of relevant Hopf bifurcations using the normal form method and the center manifold theory. By performing numerical calculations and analysis, we verify the validity of our analytically obtained results. Our research results reveal a classical period-doubling route towards deterministic chaos in the studied system, and play an important role for the better understanding of the complex dynamics of two disc dynamos with viscous friction subject to multiple time delays.

Suggested Citation

  • Wei, Zhouchao & Zhu, Bin & Yang, Jing & Perc, Matjaž & Slavinec, Mitja, 2019. "Bifurcation analysis of two disc dynamos with viscous friction and multiple time delays," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 265-281.
  • Handle: RePEc:eee:apmaco:v:347:y:2019:i:c:p:265-281
    DOI: 10.1016/j.amc.2018.10.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318309706
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.10.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Chunbiao & Sprott, Julien Clinton & Kapitaniak, Tomasz & Lu, Tianai, 2018. "Infinite lattice of hyperchaotic strange attractors," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 76-82.
    2. Ginoux, Jean-Marc & Ruskeepää, Heikki & Perc, Matjaž & Naeck, Roomila & Costanzo, Véronique Di & Bouchouicha, Moez & Fnaiech, Farhat & Sayadi, Mounir & Hamdi, Takoua, 2018. "Is type 1 diabetes a chaotic phenomenon?," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 198-205.
    3. Fister, Iztok & Perc, Matjaž & Kamal, Salahuddin M. & Fister, Iztok, 2015. "A review of chaos-based firefly algorithms: Perspectives and research challenges," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 155-165.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chein-Shan Liu & Yung-Wei Chen, 2021. "A Simplified Lindstedt-Poincaré Method for Saving Computational Cost to Determine Higher Order Nonlinear Free Vibrations," Mathematics, MDPI, vol. 9(23), pages 1-17, November.
    2. Prakash, M. & Rakkiyappan, R. & Manivannan, A. & Cao, Jinde, 2019. "Dynamical analysis of antigen-driven T-cell infection model with multiple delays," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 266-281.
    3. Zare, Shahryar & Tavakolpour-Saleh, A.R. & Binazadeh, T., 2023. "Analytical investigation of free piston Stirling engines using practical stability method," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    4. Navid Moghadam, Nastaran & Nazarimehr, Fahimeh & Jafari, Sajad & Sprott, Julien C., 2020. "Studying the performance of critical slowing down indicators in a biological system with a period-doubling route to chaos," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    5. Deng, Shuning & Ji, Jinchen & Wen, Guilin & Xu, Huidong, 2021. "A comparative study of the dynamics of a three-disk dynamo system with and without time delay," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    6. Yang, Bowen & Liu, Ping, 2019. "Global stability and Hopf bifurcation of a three-component model for cell production systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 478-489.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehmood, Ammara & Raja, Muhammad Asif Zahoor & Ninness, Brett, 2024. "Design of fractional-order hammerstein control auto-regressive model for heat exchanger system identification: Treatise on fuzzy-evolutionary computing," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. Kostić, Srđan & Vasović, Nebojša & Sunarić, Duško, 2015. "A new approach to grid search method in slope stability analysis using Box–Behnken statistical design," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 425-437.
    3. Zhou, Ling & You, Zhenzhen & Tang, Yun, 2021. "A new chaotic system with nested coexisting multiple attractors and riddled basins," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    4. Li, Chunbiao & Gu, Zhenyu & Liu, Zuohua & Jafari, Sajad & Kapitaniak, Tomasz, 2021. "Constructing chaotic repellors," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Ivona Brajević & Jelena Ignjatović, 2019. "An upgraded firefly algorithm with feasibility-based rules for constrained engineering optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2545-2574, August.
    6. Zhou, Quan & Zhang, Wei & Cash, Scott & Olatunbosun, Oluremi & Xu, Hongming & Lu, Guoxiang, 2017. "Intelligent sizing of a series hybrid electric power-train system based on Chaos-enhanced accelerated particle swarm optimization," Applied Energy, Elsevier, vol. 189(C), pages 588-601.
    7. Dutta, Maitreyee & Roy, Binoy Krishna, 2020. "A new fractional-order system displaying coexisting multiwing attractors; its synchronisation and circuit simulation," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    8. Leutcho, Gervais Dolvis & Kengne, Jacques, 2018. "A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 275-293.
    9. Trobia, José & de Souza, Silvio L.T. & dos Santos, Margarete A. & Szezech, José D. & Batista, Antonio M. & Borges, Rafael R. & Pereira, Leandro da S. & Protachevicz, Paulo R. & Caldas, Iberê L. & Iaro, 2022. "On the dynamical behaviour of a glucose-insulin model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    10. Yan, Zheping & Zhang, Jinzhong & Zeng, Jia & Tang, Jialing, 2021. "Nature-inspired approach: An enhanced whale optimization algorithm for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 17-46.
    11. Sujata Dash & Ajith Abraham & Ashish Kr Luhach & Jolanta Mizera-Pietraszko & Joel JPC Rodrigues, 2020. "Hybrid chaotic firefly decision making model for Parkinson’s disease diagnosis," International Journal of Distributed Sensor Networks, , vol. 16(1), pages 15501477198, January.
    12. Gu, Shuangquan & He, Shaobo & Wang, Huihai & Du, Baoxiang, 2021. "Analysis of three types of initial offset-boosting behavior for a new fractional-order dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    13. Izadyar, Nima & Ghadamian, Hossein & Ong, Hwai Chyuan & moghadam, Zeinab & Tong, Chong Wen & Shamshirband, Shahaboddin, 2015. "Appraisal of the support vector machine to forecast residential heating demand for the District Heating System based on the monthly overall natural gas consumption," Energy, Elsevier, vol. 93(P2), pages 1558-1567.
    14. Wu, Qiujie & Hong, Qinghui & Liu, Xiaoyang & Wang, Xiaoping & Zeng, Zhigang, 2020. "A novel amplitude control method for constructing nested hidden multi-butterfly and multiscroll chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    15. Elena Niculina Dragoi & Vlad Dafinescu, 2021. "Review of Metaheuristics Inspired from the Animal Kingdom," Mathematics, MDPI, vol. 9(18), pages 1-52, September.
    16. Zang, Haixiang & Cheng, Lilin & Ding, Tao & Cheung, Kwok W. & Wang, Miaomiao & Wei, Zhinong & Sun, Guoqiang, 2019. "Estimation and validation of daily global solar radiation by day of the year-based models for different climates in China," Renewable Energy, Elsevier, vol. 135(C), pages 984-1003.
    17. Yang, Chuanzuo & Luan, Guoming & Liu, Zhao & Wang, Qingyun, 2019. "Dynamical analysis of epileptic characteristics based on recurrence quantification of SEEG recordings," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 507-515.
    18. Arvinder Kaur & Saibal K. Pal & Amrit Pal Singh, 2018. "New chaotic flower pollination algorithm for unconstrained non-linear optimization functions," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(4), pages 853-865, August.
    19. Yu, Caiyang & Cai, Zhennao & Ye, Xiaojia & Wang, Mingjing & Zhao, Xuehua & Liang, Guoxi & Chen, Huiling & Li, Chengye, 2020. "Quantum-like mutation-induced dragonfly-inspired optimization approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 259-289.
    20. Jun, Luo & Liheng, Liu & Xianyi, Wu, 2015. "A double-subpopulation variant of the bat algorithm," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 361-377.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:347:y:2019:i:c:p:265-281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.