IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v9y2018i4d10.1007_s13198-017-0664-y.html
   My bibliography  Save this article

New chaotic flower pollination algorithm for unconstrained non-linear optimization functions

Author

Listed:
  • Arvinder Kaur

    (USICT, GGSIPU)

  • Saibal K. Pal

    (SAG, DRDO)

  • Amrit Pal Singh

    (USICT, GGSIPU)

Abstract

Flower pollination algorithm (FPA) is susceptible to local optimum and substandard precision of calculations. Chaotic operator (CO), which is used in local algorithms to optimize the best individuals in the population, can successfully enhance the properties of the flower pollination algorithm. A new chaotic flower pollination algorithm (CFPA) has been proposed in this work. Further FPA and its four proposed variants by using different chaotic maps are tested on nine mathematical benchmark functions of high dimensions. Proposed variants of CFPA are CFPA1, CFPA2, CFPA3 and CFPA4. The result of the experiment indicates that the proposed chaotic flower pollination variant CFPA2 could increase the precision of minimization of function value and CPU time to run an algorithm.

Suggested Citation

  • Arvinder Kaur & Saibal K. Pal & Amrit Pal Singh, 2018. "New chaotic flower pollination algorithm for unconstrained non-linear optimization functions," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(4), pages 853-865, August.
  • Handle: RePEc:spr:ijsaem:v:9:y:2018:i:4:d:10.1007_s13198-017-0664-y
    DOI: 10.1007/s13198-017-0664-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-017-0664-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-017-0664-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fister, Iztok & Perc, Matjaž & Kamal, Salahuddin M. & Fister, Iztok, 2015. "A review of chaos-based firefly algorithms: Perspectives and research challenges," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 155-165.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehmood, Ammara & Raja, Muhammad Asif Zahoor & Ninness, Brett, 2024. "Design of fractional-order hammerstein control auto-regressive model for heat exchanger system identification: Treatise on fuzzy-evolutionary computing," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. Ivona Brajević & Jelena Ignjatović, 2019. "An upgraded firefly algorithm with feasibility-based rules for constrained engineering optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2545-2574, August.
    3. Zhou, Quan & Zhang, Wei & Cash, Scott & Olatunbosun, Oluremi & Xu, Hongming & Lu, Guoxiang, 2017. "Intelligent sizing of a series hybrid electric power-train system based on Chaos-enhanced accelerated particle swarm optimization," Applied Energy, Elsevier, vol. 189(C), pages 588-601.
    4. Yan, Zheping & Zhang, Jinzhong & Zeng, Jia & Tang, Jialing, 2021. "Nature-inspired approach: An enhanced whale optimization algorithm for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 17-46.
    5. Sujata Dash & Ajith Abraham & Ashish Kr Luhach & Jolanta Mizera-Pietraszko & Joel JPC Rodrigues, 2020. "Hybrid chaotic firefly decision making model for Parkinson’s disease diagnosis," International Journal of Distributed Sensor Networks, , vol. 16(1), pages 15501477198, January.
    6. Izadyar, Nima & Ghadamian, Hossein & Ong, Hwai Chyuan & moghadam, Zeinab & Tong, Chong Wen & Shamshirband, Shahaboddin, 2015. "Appraisal of the support vector machine to forecast residential heating demand for the District Heating System based on the monthly overall natural gas consumption," Energy, Elsevier, vol. 93(P2), pages 1558-1567.
    7. Zang, Haixiang & Cheng, Lilin & Ding, Tao & Cheung, Kwok W. & Wang, Miaomiao & Wei, Zhinong & Sun, Guoqiang, 2019. "Estimation and validation of daily global solar radiation by day of the year-based models for different climates in China," Renewable Energy, Elsevier, vol. 135(C), pages 984-1003.
    8. Kisi, Ozgur & Shiri, Jalal & Karimi, Sepideh & Shamshirband, Shahaboddin & Motamedi, Shervin & Petković, Dalibor & Hashim, Roslan, 2015. "A survey of water level fluctuation predicting in Urmia Lake using support vector machine with firefly algorithm," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 731-743.
    9. Panahi, Shirin & Aram, Zainab & Jafari, Sajad & Ma, Jun & Sprott, J.C., 2017. "Modeling of epilepsy based on chaotic artificial neural network," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 150-156.
    10. Kostić, Srđan & Vasović, Nebojša & Sunarić, Duško, 2015. "A new approach to grid search method in slope stability analysis using Box–Behnken statistical design," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 425-437.
    11. Wei, Zhouchao & Zhu, Bin & Yang, Jing & Perc, Matjaž & Slavinec, Mitja, 2019. "Bifurcation analysis of two disc dynamos with viscous friction and multiple time delays," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 265-281.
    12. Elena Niculina Dragoi & Vlad Dafinescu, 2021. "Review of Metaheuristics Inspired from the Animal Kingdom," Mathematics, MDPI, vol. 9(18), pages 1-52, September.
    13. Yu, Caiyang & Cai, Zhennao & Ye, Xiaojia & Wang, Mingjing & Zhao, Xuehua & Liang, Guoxi & Chen, Huiling & Li, Chengye, 2020. "Quantum-like mutation-induced dragonfly-inspired optimization approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 259-289.
    14. Jun, Luo & Liheng, Liu & Xianyi, Wu, 2015. "A double-subpopulation variant of the bat algorithm," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 361-377.
    15. Abubaker Younis & Fatima Belabbes & Petru Adrian Cotfas & Daniel Tudor Cotfas, 2024. "Utilizing the Honeybees Mating-Inspired Firefly Algorithm to Extract Parameters of the Wind Speed Weibull Model," Forecasting, MDPI, vol. 6(2), pages 1-21, May.
    16. Fister, Iztok & Perc, Matjaž & Ljubič, Karin & Kamal, Salahuddin M. & Iglesias, Andres & Fister, Iztok, 2015. "Particle swarm optimization for automatic creation of complex graphic characters," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 29-35.
    17. Anjaiah, Kanche & Dash, P.K. & Bisoi, Ranjeeta & Dhar, Snehamoy & Mishra, S.P., 2024. "A new approach for active and reactive power management in renewable based hybrid microgrid considering storage devices," Applied Energy, Elsevier, vol. 367(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:9:y:2018:i:4:d:10.1007_s13198-017-0664-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.