IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i14p2391-d857778.html
   My bibliography  Save this article

Bifurcation Theory, Lie Group-Invariant Solutions of Subalgebras and Conservation Laws of a Generalized (2+1)-Dimensional BK Equation Type II in Plasma Physics and Fluid Mechanics

Author

Listed:
  • Oke Davies Adeyemo

    (Department of Mathematical Sciences, International Institute for Symmetry Analysis and Mathematical Modelling, Mafikeng Campus, North-West University, Private Bag X 2046, Mmabatho 2735, South Africa)

  • Lijun Zhang

    (Department of Mathematical Sciences, International Institute for Symmetry Analysis and Mathematical Modelling, Mafikeng Campus, North-West University, Private Bag X 2046, Mmabatho 2735, South Africa
    College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China)

  • Chaudry Masood Khalique

    (Department of Mathematical Sciences, International Institute for Symmetry Analysis and Mathematical Modelling, Mafikeng Campus, North-West University, Private Bag X 2046, Mmabatho 2735, South Africa)

Abstract

The nonlinear phenomena in numbers are modelled in a wide range of fields such as chemical physics, ocean physics, optical fibres, plasma physics, fluid dynamics, solid-state physics, biological physics and marine engineering. This research article systematically investigates a (2+1)-dimensional generalized Bogoyavlensky–Konopelchenko equation. We achieve a five-dimensional Lie algebra of the equation through Lie group analysis. This, in turn, affords us the opportunity to compute an optimal system of fourteen-dimensional Lie subalgebras related to the underlying equation. As a consequence, the various subalgebras are engaged in performing symmetry reductions of the equation leading to many solvable nonlinear ordinary differential equations. Thus, we secure different types of solitary wave solutions including periodic (Weierstrass and elliptic integral), topological kink and anti-kink, complex, trigonometry and hyperbolic functions. Moreover, we utilize the bifurcation theory of dynamical systems to obtain diverse nontrivial travelling wave solutions consisting of both bounded as well as unbounded solution-types to the equation under consideration. Consequently, we generate solutions that are algebraic, periodic, constant and trigonometric in nature. The various results gained in the study are further analyzed through numerical simulation. Finally, we achieve conservation laws of the equation under study by engaging the standard multiplier method with the inclusion of the homotopy integral formula related to the obtained multipliers. In addition, more conserved currents of the equation are secured through Noether’s theorem.

Suggested Citation

  • Oke Davies Adeyemo & Lijun Zhang & Chaudry Masood Khalique, 2022. "Bifurcation Theory, Lie Group-Invariant Solutions of Subalgebras and Conservation Laws of a Generalized (2+1)-Dimensional BK Equation Type II in Plasma Physics and Fluid Mechanics," Mathematics, MDPI, vol. 10(14), pages 1-46, July.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2391-:d:857778
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/14/2391/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/14/2391/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Ji-Huan & Wu, Xu-Hong, 2006. "Exp-function method for nonlinear wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 700-708.
    2. Lijun Zhang & C. M. Khalique, 2014. "Traveling Wave Solutions and Infinite-Dimensional Linear Spaces of Multiwave Solutions to Jimbo-Miwa Equation," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-7, April.
    3. Shou-Ting Chen & Wen-Xiu Ma, 2019. "Exact Solutions to a Generalized Bogoyavlensky-Konopelchenko Equation via Maple Symbolic Computations," Complexity, Hindawi, vol. 2019, pages 1-6, January.
    4. Kudryashov, Nikolai A., 2005. "Simplest equation method to look for exact solutions of nonlinear differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 24(5), pages 1217-1231.
    5. Sirendaoreji & Sun Jiong, 2003. "Auxiliary Equation Method And Its Applications To Nonlinear Evolution Equations," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 14(08), pages 1075-1085.
    6. Chen, Yong & Yan, Zhenya, 2005. "New exact solutions of (2+1)-dimensional Gardner equation via the new sine-Gordon equation expansion method," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 399-406.
    7. Chaudry Masood Khalique & Oke Davies Adeyemo, 2020. "Closed-Form Solutions and Conserved Vectors of a Generalized (3+1)-Dimensional Breaking Soliton Equation of Engineering and Nonlinear Science," Mathematics, MDPI, vol. 8(10), pages 1-30, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yıldırım, Yakup & Yaşar, Emrullah, 2018. "A (2+1)-dimensional breaking soliton equation: Solutions and conservation laws," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 146-155.
    2. Navickas, Z. & Ragulskis, M. & Telksnys, T., 2016. "Existence of solitary solutions in a class of nonlinear differential equations with polynomial nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 333-338.
    3. Sağlam Özkan, Yeşim & Yaşar, Emrullah, 2021. "Breather-type and multi-wave solutions for (2+1)-dimensional nonlocal Gardner equation," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    4. Ma, Wen-Xiu & Lee, Jyh-Hao, 2009. "A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo–Miwa equation," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1356-1363.
    5. Chaudry Masood Khalique & Oke Davies Adeyemo, 2020. "Closed-Form Solutions and Conserved Vectors of a Generalized (3+1)-Dimensional Breaking Soliton Equation of Engineering and Nonlinear Science," Mathematics, MDPI, vol. 8(10), pages 1-30, October.
    6. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    7. Sheng Zhang & Jiao Gao & Bo Xu, 2022. "An Integrable Evolution System and Its Analytical Solutions with the Help of Mixed Spectral AKNS Matrix Problem," Mathematics, MDPI, vol. 10(21), pages 1-16, October.
    8. Yongyi Gu & Fanning Meng, 2019. "Searching for Analytical Solutions of the (2+1)-Dimensional KP Equation by Two Different Systematic Methods," Complexity, Hindawi, vol. 2019, pages 1-11, August.
    9. Xu, Lan, 2008. "Variational approach to solitons of nonlinear dispersive K(m,n) equations," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 137-143.
    10. Kudryashov, Nikolay A. & Zakharchenko, Anastasia S., 2014. "Painlevé analysis and exact solutions for the Belousov–Zhabotinskii reaction–diffusion system," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 111-117.
    11. Suheel Abdullah Malik & Ijaz Mansoor Qureshi & Muhammad Amir & Aqdas Naveed Malik & Ihsanul Haq, 2015. "Numerical Solution to Generalized Burgers'-Fisher Equation Using Exp-Function Method Hybridized with Heuristic Computation," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-15, March.
    12. Eslami, Mostafa, 2016. "Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 141-148.
    13. Zeng, Xiping & Dai, Zhengde & Li, Donglong, 2009. "New periodic soliton solutions for the (3+1)-dimensional potential-YTSF equation," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 657-661.
    14. Nguyen, Lu Trong Khiem, 2015. "Modified homogeneous balance method: Applications and new solutions," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 148-155.
    15. M. Ali Akbar & Md. Nur Alam & Md. Golam Hafez, 2016. "Application of the novel (G′/G)-expansion method to construct traveling wave solutions to the positive Gardner-KP equation," Indian Journal of Pure and Applied Mathematics, Springer, vol. 47(1), pages 85-96, March.
    16. Kudryashov, N.A., 2015. "On nonlinear differential equation with exact solutions having various pole orders," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 173-177.
    17. Yusuf Pandir & Halime Ulusoy, 2013. "New Generalized Hyperbolic Functions to Find New Exact Solutions of the Nonlinear Partial Differential Equations," Journal of Mathematics, Hindawi, vol. 2013, pages 1-5, January.
    18. Javidi, M. & Golbabai, A., 2009. "Modified homotopy perturbation method for solving non-linear Fredholm integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1408-1412.
    19. Innocent Simbanefayi & Chaudry Masood Khalique, 2020. "Group Invariant Solutions and Conserved Quantities of a (3+1)-Dimensional Generalized Kadomtsev–Petviashvili Equation," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    20. Jing Chang & Jin Zhang & Ming Cai, 2021. "Series Solutions of High-Dimensional Fractional Differential Equations," Mathematics, MDPI, vol. 9(17), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2391-:d:857778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.