Some lump solutions for a generalized (3+1)-dimensional Kadomtsev–Petviashvili equation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2019.124757
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kudryashov, Nikolay A., 2019. "Exact solutions of the equation for surface waves in a convecting fluid," Applied Mathematics and Computation, Elsevier, vol. 344, pages 97-106.
- Kudryashov, Nikolay A., 2019. "Lax pair and first integrals of the traveling wave reduction for the KdV hierarchy," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 323-330.
- Kudryashov, N.A. & Muratov, R.V. & Ryabov, P.N., 2018. "The collective behavior of shear strain localizations in dipolar materials," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 164-174.
- Hu, Bei-Bei & Xia, Tie-Cheng & Ma, Wen-Xiu, 2018. "Riemann–Hilbert approach for an initial-boundary value problem of the two-component modified Korteweg-de Vries equation on the half-line," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 148-159.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Run-Fa & Li, Ming-Chu & Albishari, Mohammed & Zheng, Fu-Chang & Lan, Zhong-Zhou, 2021. "Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation," Applied Mathematics and Computation, Elsevier, vol. 403(C).
- Hejazi, S. Reza & Saberi, Elaheh & Mohammadizadeh, Fatemeh, 2021. "Anisotropic non-linear time-fractional diffusion equation with a source term: Classification via Lie point symmetries, analytic solutions and numerical simulation," Applied Mathematics and Computation, Elsevier, vol. 391(C).
- Ma, Yu-Lan & Wazwaz, Abdul-Majid & Li, Bang-Qing, 2021. "A new (3+1)-dimensional Kadomtsev–Petviashvili equation and its integrability, multiple-solitons, breathers and lump waves," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 505-519.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kudryashov, Nikolay A., 2020. "Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations," Applied Mathematics and Computation, Elsevier, vol. 371(C).
- Kudryashov, Nikolay A., 2020. "Optical solitons of model with integrable equation for wave packet envelope," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
- Kudryashov, Nikolay A. & Kutukov, Aleksandr A. & Biswas, Anjan & Zhou, Qin & Yıldırım, Yakup & Alshomrani, Ali Saleh, 2023. "Optical solitons for the concatenation model: Power-law nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
- AlQahtani, Salman A. & Alngar, Mohamed E.M. & Shohib, Reham M.A. & Pathak, Pranavkumar, 2023. "Highly dispersive embedded solitons with quadratic χ(2) and cubic χ(3) non-linear susceptibilities having multiplicative white noise via Itô calculus," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
- Bo Xu & Sheng Zhang, 2022. "Analytical Method for Generalized Nonlinear Schrödinger Equation with Time-Varying Coefficients: Lax Representation, Riemann-Hilbert Problem Solutions," Mathematics, MDPI, vol. 10(7), pages 1-15, March.
- Nikolay A. Kudryashov, 2021. "Implicit Solitary Waves for One of the Generalized Nonlinear Schrödinger Equations," Mathematics, MDPI, vol. 9(23), pages 1-9, November.
- Juan Luis García Guirao & Haci Mehmet Baskonus & Ajay Kumar, 2020. "Regarding New Wave Patterns of the Newly Extended Nonlinear (2+1)-Dimensional Boussinesq Equation with Fourth Order," Mathematics, MDPI, vol. 8(3), pages 1-9, March.
- Hu, Beibei & Lin, Ji & Zhang, Ling, 2022. "On the Riemann-Hilbert problem for the integrable three-coupled Hirota system with a 4×4 matrix Lax pair," Applied Mathematics and Computation, Elsevier, vol. 428(C).
- Kudryashov, Nikolay A., 2024. "Solitons of the complex modified Korteweg–de Vries hierarchy," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
- Liu, Ling & Wen, Xiao-Yong & Liu, Nan & Jiang, Tao & Yuan, Jin-Yun, 2020. "An integrable lattice hierarchy associated with a 4 × 4 matrix spectral problem: N-fold Darboux transformation and dynamical properties," Applied Mathematics and Computation, Elsevier, vol. 387(C).
- Kudryashov, Nikolay A., 2019. "Lax pair and first integrals of the traveling wave reduction for the KdV hierarchy," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 323-330.
- Triki, Houria & Choudhuri, Amitava & Zhou, Qin & Biswas, Anjan & Alshomrani, Ali Saleh, 2020. "Nonautonomous matter wave bright solitons in a quasi-1D Bose-Einstein condensate system with contact repulsion and dipole-dipole attraction," Applied Mathematics and Computation, Elsevier, vol. 371(C).
- Tongshuai Liu & Huanhe Dong, 2019. "The Prolongation Structure of the Modified Nonlinear Schrödinger Equation and Its Initial-Boundary Value Problem on the Half Line via the Riemann-Hilbert Approach," Mathematics, MDPI, vol. 7(2), pages 1-17, February.
- Kudryashov, Nikolay A. & Lavrova, Sofia F., 2024. "Traveling wave solutions of the derivative nonlinear Schrödinger hierarchy," Applied Mathematics and Computation, Elsevier, vol. 477(C).
- Nikolay A. Kudryashov & Sofia F. Lavrova, 2023. "Painlevé Test, Phase Plane Analysis and Analytical Solutions of the Chavy–Waddy–Kolokolnikov Model for the Description of Bacterial Colonies," Mathematics, MDPI, vol. 11(14), pages 1-17, July.
- Hu, Beibei & Zhang, Ling & Xia, Tiecheng & Zhang, Ning, 2020. "On the Riemann-Hilbert problem of the Kundu equation," Applied Mathematics and Computation, Elsevier, vol. 381(C).
- Liu, Hong-Zhun, 2022. "A modification to the first integral method and its applications," Applied Mathematics and Computation, Elsevier, vol. 419(C).
- Kudryashov, Nikolay A., 2020. "First integrals and general solution of the complex Ginzburg-Landau equation," Applied Mathematics and Computation, Elsevier, vol. 386(C).
More about this item
Keywords
Soliton; Kadomtsev–Petviashvili equation; Lump solution;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:366:y:2020:i:c:s0096300319307490. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.