IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i11p2015-d443827.html
   My bibliography  Save this article

Statistical Parameters Based on Fuzzy Measures

Author

Listed:
  • Fernando Reche

    (Department of Mathematics and Center for the Development and Transfer of Mathematical Research to Industry (CDTIME), University of Almería, 04120 Almería, Spain)

  • María Morales

    (Department of Mathematics and Center for the Development and Transfer of Mathematical Research to Industry (CDTIME), University of Almería, 04120 Almería, Spain)

  • Antonio Salmerón

    (Department of Mathematics and Center for the Development and Transfer of Mathematical Research to Industry (CDTIME), University of Almería, 04120 Almería, Spain)

Abstract

In this paper, we study the problem of defining statistical parameters when the uncertainty is expressed using a fuzzy measure. We extend the concept of monotone expectation in order to define a monotone variance and monotone moments. We also study parameters that allow the joint analysis of two functions defined over the same reference set. Finally, we propose some parameters over product spaces, considering the case in which a function over the product space is available and also the case in which such function is obtained by combining those in the marginal spaces.

Suggested Citation

  • Fernando Reche & María Morales & Antonio Salmerón, 2020. "Statistical Parameters Based on Fuzzy Measures," Mathematics, MDPI, vol. 8(11), pages 1-20, November.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:2015-:d:443827
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/11/2015/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/11/2015/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pierpaolo D’Urso & María Ángeles Gil, 2017. "Fuzzy data analysis and classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 645-657, December.
    2. Coppi, Renato & Gil, Maria A. & Kiers, Henk A.L., 2006. "The fuzzy approach to statistical analysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 1-14, November.
    3. Jun Li, 2020. "On Null-Continuity of Monotone Measures," Mathematics, MDPI, vol. 8(2), pages 1-13, February.
    4. Coppi, Renato & D’Urso, Pierpaolo & Giordani, Paolo, 2012. "Fuzzy and possibilistic clustering for fuzzy data," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 915-927.
    5. Rong Zhang & Baabak Ashuri & Yong Deng, 2017. "A novel method for forecasting time series based on fuzzy logic and visibility graph," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 759-783, December.
    6. Abbas Parchami & S. Taheri & Mashaallah Mashinchi, 2010. "Fuzzy p-value in testing fuzzy hypotheses with crisp data," Statistical Papers, Springer, vol. 51(1), pages 209-226, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gia Sirbiladze & Tariel Khvedelidze, 2023. "Associated Statistical Parameters’ Aggregations in Interactive MADM," Mathematics, MDPI, vol. 11(4), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gia Sirbiladze & Tariel Khvedelidze, 2023. "Associated Statistical Parameters’ Aggregations in Interactive MADM," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
    2. Dong-Rui Chen & Chuang Liu & Yi-Cheng Zhang & Zi-Ke Zhang, 2019. "Predicting Financial Extremes Based on Weighted Visual Graph of Major Stock Indices," Complexity, Hindawi, vol. 2019, pages 1-17, October.
    3. Ferraro, Maria Brigida, 2024. "Fuzzy k-Means: history and applications," Econometrics and Statistics, Elsevier, vol. 30(C), pages 110-123.
    4. Andrey Privalov & Vera Lukicheva & Igor Kotenko & Igor Saenko, 2020. "Increasing the Sensitivity of the Method of Early Detection of Cyber-Attacks in Telecommunication Networks Based on Traffic Analysis by Extreme Filtering," Energies, MDPI, vol. 13(11), pages 1-18, June.
    5. Soheil Sadi-Nezhad & Kaveh Khalili-Damghani & Ameneh Norouzi, 2015. "A new fuzzy clustering algorithm based on multi-objective mathematical programming," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 168-197, April.
    6. Naoto Yamashita & Shin-ichi Mayekawa, 2015. "A new biplot procedure with joint classification of objects and variables by fuzzy c-means clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(3), pages 243-266, September.
    7. Haoyu Liu & Kim Hua Tan & Xianfeng Wu, 2023. "Who’s watching? Classifying sports viewers on social live streaming services," Annals of Operations Research, Springer, vol. 325(1), pages 743-765, June.
    8. Tianxiang Zhan & Fuyuan Xiao, 2021. "A Fast Evidential Approach for Stock Forecasting," Papers 2104.05204, arXiv.org, revised Jul 2021.
    9. Enrico Ciavolino & Antonio Calcagnì, 2014. "A generalized maximum entropy (GME) approach for crisp-input/fuzzy-output regression model," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 3401-3414, November.
    10. Li, Meizhu & Zhang, Qi & Deng, Yong, 2018. "Evidential identification of influential nodes in network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 283-296.
    11. Karel Hron & Paula Brito & Peter Filzmoser, 2017. "Exploratory data analysis for interval compositional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(2), pages 223-241, June.
    12. Abbas Parchami & S. Taheri & Mashaallah Mashinchi, 2012. "Testing fuzzy hypotheses based on vague observations: a p-value approach," Statistical Papers, Springer, vol. 53(2), pages 469-484, May.
    13. Simona Hašková & Petr Šuleř & Róbert Kuchár, 2023. "A Fuzzy Multi-Criteria Evaluation System for Share Price Prediction: A Tesla Case Study," Mathematics, MDPI, vol. 11(13), pages 1-17, July.
    14. Pierpaolo D’Urso & María Ángeles Gil, 2017. "Fuzzy data analysis and classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 645-657, December.
    15. Pierpaolo D'Urso & Marta Disegna & Riccardo Massari & Linda Osti, 2014. "Fuzzy segmentation in postmodern consumers," BEMPS - Bozen Economics & Management Paper Series BEMPS20, Faculty of Economics and Management at the Free University of Bozen.
    16. Han, Yongming & Geng, Zhiqiang & Zhu, Qunxiong & Qu, Yixin, 2015. "Energy efficiency analysis method based on fuzzy DEA cross-model for ethylene production systems in chemical industry," Energy, Elsevier, vol. 83(C), pages 685-695.
    17. Pierpaolo D’Urso & Livia Giovanni & Riccardo Massari, 2015. "Trimmed fuzzy clustering for interval-valued data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(1), pages 21-40, March.
    18. Hu, Yuntong & Xiao, Fuyuan, 2022. "An efficient forecasting method for time series based on visibility graph and multi-subgraph similarity," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    19. Fernando Reche & María Morales & Antonio Salmerón, 2020. "Construction of Fuzzy Measures over Product Spaces," Mathematics, MDPI, vol. 8(9), pages 1-18, September.
    20. Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu, 2021. "Fuzzy Control System for Smart Energy Management in Residential Buildings Based on Environmental Data," Energies, MDPI, vol. 14(3), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:2015-:d:443827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.