IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v320y2018icp302-318.html
   My bibliography  Save this article

A time-space spectral method for the time-space fractional Fokker–Planck equation and its inverse problem

Author

Listed:
  • Zhang, Hui
  • Jiang, Xiaoyun
  • Yang, Xiu

Abstract

In the paper, we consider a time-space spectral method to get the numerical solution of time-space fractional Fokker–Planck initial-boundary value problem. The temporal discretization is constructed by Jacobi polynomials and the spatial discretization is composed by Legendre polynomials. Moreover, we present the stability and convergence analysis strictly. The main advantages of the provided method are spectrally accurate in time and space and high computational efficiency. In addition, we introduce the inverse problem based on the spectral form with high-order accuracy of the direct problem for the first time, the Levenberg–Marquardt (L–M) method is proposed to estimate the two fractional derivatives α and 2β. Some numerical results presented are consistent with the theoretical analysis.

Suggested Citation

  • Zhang, Hui & Jiang, Xiaoyun & Yang, Xiu, 2018. "A time-space spectral method for the time-space fractional Fokker–Planck equation and its inverse problem," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 302-318.
  • Handle: RePEc:eee:apmaco:v:320:y:2018:i:c:p:302-318
    DOI: 10.1016/j.amc.2017.09.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317306689
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.09.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Wenping & Jiang, Xiaoyun & Qi, Haitao, 2015. "Parameter estimation for the generalized fractional element network Zener model based on the Bayesian method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 40-49.
    2. Meerschaert, Mark M. & Scalas, Enrico, 2006. "Coupled continuous time random walks in finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 114-118.
    3. Yu, Bo & Jiang, Xiaoyun & Wang, Chu, 2016. "Numerical algorithms to estimate relaxation parameters and Caputo fractional derivative for a fractional thermal wave model in spherical composite medium," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 106-118.
    4. Raberto, Marco & Scalas, Enrico & Mainardi, Francesco, 2002. "Waiting-times and returns in high-frequency financial data: an empirical study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 749-755.
    5. Gaviraghi, B. & Annunziato, M. & Borzì, A., 2017. "Analysis of splitting methods for solving a partial integro-differential Fokker–Planck equation," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 1-17.
    6. Chen, Yanping & Zhou, Jianwei, 2015. "Error estimates of spectral Legendre–Galerkin methods for the fourth-order equation in one dimension," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 1217-1226.
    7. Wang, JinRong, 2015. "Approximate mild solutions of fractional stochastic evolution equations in Hilbert spaces," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 315-323.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Baoli & Liu, Yang & Li, Hong, 2020. "A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    2. Yang, Hong & Lao, Cheng-Xue & She, Zi-Hang, 2023. "Fast solution methods for Riesz space fractional diffusion equations with non-separable coefficients," Applied Mathematics and Computation, Elsevier, vol. 445(C).
    3. Gao, Xinghua & Yin, Baoli & Li, Hong & Liu, Yang, 2021. "TT-M FE method for a 2D nonlinear time distributed-order and space fractional diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 117-137.
    4. Ji Lin & Sergiy Reutskiy & Yuhui Zhang & Yu Sun & Jun Lu, 2023. "The Novel Analytical–Numerical Method for Multi-Dimensional Multi-Term Time-Fractional Equations with General Boundary Conditions," Mathematics, MDPI, vol. 11(4), pages 1-26, February.
    5. Liu, Yi & Chi, Xiaoqing & Xu, Huanying & Jiang, Xiaoyun, 2022. "Fast method and convergence analysis for the magnetohydrodynamic flow and heat transfer of fractional Maxwell fluid," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    6. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    7. Chi, Xiaoqing & Jiang, Xiaoyun, 2021. "Finite difference Laguerre-Legendre spectral method for the two-dimensional generalized Oldroyd-B fluid on a semi-infinite domain," Applied Mathematics and Computation, Elsevier, vol. 402(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schumer, Rina & Baeumer, Boris & Meerschaert, Mark M., 2011. "Extremal behavior of a coupled continuous time random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(3), pages 505-511.
    2. Scalas, Enrico & Politi, Mauro, 2012. "A parsimonious model for intraday European option pricing," Economics Discussion Papers 2012-14, Kiel Institute for the World Economy (IfW Kiel).
    3. Cen, Zhongdi & Le, Anbo & Xu, Aimin, 2017. "A robust numerical method for a fractional differential equation," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 445-452.
    4. Scalas, Enrico, 2007. "Mixtures of compound Poisson processes as models of tick-by-tick financial data," Chaos, Solitons & Fractals, Elsevier, vol. 34(1), pages 33-40.
    5. Tarasov, Vasily E., 2020. "Fractional econophysics: Market price dynamics with memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    6. Vasily E. Tarasov & Valentina V. Tarasova, 2019. "Dynamic Keynesian Model of Economic Growth with Memory and Lag," Mathematics, MDPI, vol. 7(2), pages 1-17, February.
    7. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    8. Straka, P. & Henry, B.I., 2011. "Lagging and leading coupled continuous time random walks, renewal times and their joint limits," Stochastic Processes and their Applications, Elsevier, vol. 121(2), pages 324-336, February.
    9. Meerschaert, Mark M. & Scheffler, Hans-Peter, 2008. "Triangular array limits for continuous time random walks," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1606-1633, September.
    10. Greenwood, Priscilla E. & Schick, Anton & Wefelmeyer, Wolfgang, 2011. "Estimating the inter-arrival time density of Markov renewal processes under structural assumptions on the transition distribution," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 277-282, February.
    11. Wang, Lei & Chen, Yi-Ming, 2020. "Shifted-Chebyshev-polynomial-based numerical algorithm for fractional order polymer visco-elastic rotating beam," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    12. Viktor Stojkoski & Trifce Sandev & Lasko Basnarkov & Ljupco Kocarev & Ralf Metzler, 2020. "Generalised geometric Brownian motion: Theory and applications to option pricing," Papers 2011.00312, arXiv.org.
    13. Scalas, Enrico & Kaizoji, Taisei & Kirchler, Michael & Huber, Jürgen & Tedeschi, Alessandra, 2006. "Waiting times between orders and trades in double-auction markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 463-471.
    14. Wael W. Mohammed & Mohammed Alshammari & Clemente Cesarano & Sultan Albadrani & M. El-Morshedy, 2022. "Brownian Motion Effects on the Stabilization of Stochastic Solutions to Fractional Diffusion Equations with Polynomials," Mathematics, MDPI, vol. 10(9), pages 1-9, April.
    15. Langlands, T.A.M., 2006. "Solution of a modified fractional diffusion equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 136-144.
    16. Hamid, M. & Usman, M. & Haq, R.U. & Wang, W., 2020. "A Chelyshkov polynomial based algorithm to analyze the transport dynamics and anomalous diffusion in fractional model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    17. Staccioli, Jacopo & Napoletano, Mauro, 2021. "An agent-based model of intra-day financial markets dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 331-348.
    18. D’Amico, Guglielmo & Janssen, Jacques & Manca, Raimondo, 2009. "European and American options: The semi-Markov case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(15), pages 3181-3194.
    19. Przemyslaw Repetowicz & Peter Richmond, 2004. "Pricing of options on stocks driven by multi-dimensional operator stable Levy processes," Papers math-ph/0412071, arXiv.org, revised Feb 2005.
    20. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2009. "Detrended fluctuation analysis of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 433-440.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:320:y:2018:i:c:p:302-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.