IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i4p929-d1065947.html
   My bibliography  Save this article

The Novel Analytical–Numerical Method for Multi-Dimensional Multi-Term Time-Fractional Equations with General Boundary Conditions

Author

Listed:
  • Ji Lin

    (College of Mechanics and Materials, Hohai University, Nanjing 210098, China
    These authors contributed equally to this work.)

  • Sergiy Reutskiy

    (A. Pidhornyi Institute of Mechanical Engineering Problems of NAS of Ukraine, 2/10 Pozharsky Street, 61046 Kharkiv, Ukraine
    These authors contributed equally to this work.)

  • Yuhui Zhang

    (College of Mechanics and Materials, Hohai University, Nanjing 210098, China
    These authors contributed equally to this work.)

  • Yu Sun

    (Nanjing Hydraulic Research Institute, Nanjing 210029, China
    These authors contributed equally to this work.)

  • Jun Lu

    (Nanjing Hydraulic Research Institute, Nanjing 210029, China
    These authors contributed equally to this work.)

Abstract

This article presents a simple but effective two-step analytical–numerical algorithm for solving multi-dimensional multi-term time-fractional equations. The first step is to derive an analytic representation that satisfies boundary requirements for 1D, 2D, and 3D problems, respectively. The second step is the meshless approximation where the Müntz polynomials are used to form the approximate solution and the unknown parameters are obtained by imposing the approximation for the governing equations. We illustrate first the detailed derivation of the analytic approximation and then the numerical implementation of the solution procedure. Several numerical examples are provided to verify the accuracy, efficiency, and adaptability to problems with general boundary conditions. The numerical results are compared with exact solutions and numerical methods reported in the literature, showing that the algorithm has great potential for multi-dimensional multi-term time-fractional equations with various boundary conditions.

Suggested Citation

  • Ji Lin & Sergiy Reutskiy & Yuhui Zhang & Yu Sun & Jun Lu, 2023. "The Novel Analytical–Numerical Method for Multi-Dimensional Multi-Term Time-Fractional Equations with General Boundary Conditions," Mathematics, MDPI, vol. 11(4), pages 1-26, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:929-:d:1065947
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/4/929/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/4/929/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Želi, Velibor & Zorica, Dušan, 2018. "Analytical and numerical treatment of the heat conduction equation obtained via time-fractional distributed-order heat conduction law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 2316-2335.
    2. Fardi, M. & Zaky, M.A. & Hendy, A.S., 2023. "Nonuniform difference schemes for multi-term and distributed-order fractional parabolic equations with fractional Laplacian," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 614-635.
    3. Fardi, Mojtaba & Khan, Yasir, 2021. "A novel finite difference-spectral method for fractal mobile/immobiletransport model based on Caputo–Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    4. Kamran Kamran & Zahir Shah & Poom Kumam & Nasser Aedh Alreshidi, 2020. "A Meshless Method Based on the Laplace Transform for the 2D Multi-Term Time Fractional Partial Integro-Differential Equation," Mathematics, MDPI, vol. 8(11), pages 1-14, November.
    5. Zhang, Hui & Jiang, Xiaoyun & Yang, Xiu, 2018. "A time-space spectral method for the time-space fractional Fokker–Planck equation and its inverse problem," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 302-318.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Baoli & Liu, Yang & Li, Hong, 2020. "A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    2. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    3. Awad, Emad, 2019. "On the time-fractional Cattaneo equation of distributed order," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 210-233.
    4. Makhmud A. Sadybekov & Irina N. Pankratova, 2022. "Correct and Stable Algorithm for Numerical Solving Nonlocal Heat Conduction Problems with Not Strongly Regular Boundary Conditions," Mathematics, MDPI, vol. 10(20), pages 1-17, October.
    5. El-Tantawy, S.A. & Salas, Alvaro H. & Alharthi, M.R., 2021. "Novel analytical cnoidal and solitary wave solutions of the Extended Kawahara equation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    6. Yang, Hong & Lao, Cheng-Xue & She, Zi-Hang, 2023. "Fast solution methods for Riesz space fractional diffusion equations with non-separable coefficients," Applied Mathematics and Computation, Elsevier, vol. 445(C).
    7. Liu, Yi & Chi, Xiaoqing & Xu, Huanying & Jiang, Xiaoyun, 2022. "Fast method and convergence analysis for the magnetohydrodynamic flow and heat transfer of fractional Maxwell fluid," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    8. Chi, Xiaoqing & Jiang, Xiaoyun, 2021. "Finite difference Laguerre-Legendre spectral method for the two-dimensional generalized Oldroyd-B fluid on a semi-infinite domain," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    9. Gao, Xinghua & Yin, Baoli & Li, Hong & Liu, Yang, 2021. "TT-M FE method for a 2D nonlinear time distributed-order and space fractional diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 117-137.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:929-:d:1065947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.