IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v181y2021icp117-137.html
   My bibliography  Save this article

TT-M FE method for a 2D nonlinear time distributed-order and space fractional diffusion equation

Author

Listed:
  • Gao, Xinghua
  • Yin, Baoli
  • Li, Hong
  • Liu, Yang

Abstract

In this paper, we consider a fast algorithm to calculate a two-dimensional nonlinear time distributed-order and space fractional diffusion equation, which is called the time two-mesh (TT-M) finite element (FE) method. In time, the TT-M algorithm combined with both the implicit second-order σ backward difference formula and Crank–Nicolson scheme for computing the numerical solution at time t1 is used to speed up the calculation. At the same time, the spatial direction is approximated by the FE method. The detailed analyses of stability and error are also given, and the second-order time convergence accuracy can be arrived at. Finally, some numerical examples are shown to illustrate the effectiveness of our numerical method.

Suggested Citation

  • Gao, Xinghua & Yin, Baoli & Li, Hong & Liu, Yang, 2021. "TT-M FE method for a 2D nonlinear time distributed-order and space fractional diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 117-137.
  • Handle: RePEc:eee:matcom:v:181:y:2021:i:c:p:117-137
    DOI: 10.1016/j.matcom.2020.09.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847542030330X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.09.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atangana, Abdon & Qureshi, Sania, 2019. "Modeling attractors of chaotic dynamical systems with fractal–fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 320-337.
    2. Yimin Zhao, 2017. "Space as method," City, Taylor & Francis Journals, vol. 21(2), pages 190-206, March.
    3. Shi, Dongyang & Yang, Huaijun, 2018. "Superconvergence analysis of finite element method for time-fractional Thermistor problem," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 31-42.
    4. Li, Changpin & Wang, Zhen, 2020. "The discontinuous Galerkin finite element method for Caputo-type nonlinear conservation law," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 169(C), pages 51-73.
    5. Zhang, Hui & Jiang, Xiaoyun & Yang, Xiu, 2018. "A time-space spectral method for the time-space fractional Fokker–Planck equation and its inverse problem," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 302-318.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Baoli & Liu, Yang & Li, Hong, 2020. "A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    2. Shi, Xiangyu & Lu, Linzhang, 2020. "A new two-grid nonconforming mixed finite element method for nonlinear Benjamin-Bona-Mahoney equation," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    3. Akgül, Ali & Partohaghighi, Mohammad, 2022. "New fractional modelling and control analysis of the circumscribed self-excited spherical strange attractor," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    4. El-Dessoky Ahmed, M.M. & Altaf Khan, Muhammad, 2020. "Modeling and analysis of the polluted lakes system with various fractional approaches," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    5. Zhang, Tianxian & Zhao, Yongqi & Xu, Xiangliang & Wu, Si & Gu, Yujuan, 2024. "Solution and dynamics analysis of fractal-fractional multi-scroll Chen chaotic system based on Adomain decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    6. Abro, Kashif Ali & Khan, Ilyas & Nisar, Kottakkaran Sooppy, 2019. "Novel technique of Atangana and Baleanu for heat dissipation in transmission line of electrical circuit," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 40-45.
    7. Yaxin Hou & Cao Wen & Hong Li & Yang Liu & Zhichao Fang & Yining Yang, 2020. "Some Second-Order σ Schemes Combined with an H 1 -Galerkin MFE Method for a Nonlinear Distributed-Order Sub-Diffusion Equation," Mathematics, MDPI, vol. 8(2), pages 1-19, February.
    8. Wang, Wanting & Khan, Muhammad Altaf & Fatmawati, & Kumam, P. & Thounthong, P., 2019. "A comparison study of bank data in fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 369-384.
    9. Li, Changpin & Wang, Zhen, 2021. "Non-uniform L1/discontinuous Galerkin approximation for the time-fractional convection equation with weak regular solution," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 838-857.
    10. Qureshi, Sania & Atangana, Abdon, 2020. "Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    11. Rihan, F.A. & Rajivganthi, C, 2020. "Dynamics of fractional-order delay differential model of prey-predator system with Holling-type III and infection among predators," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    12. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 32-40.
    13. Li, Changpin & Li, Dongxia & Wang, Zhen, 2021. "L1/LDG method for the generalized time-fractional Burgers equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 357-378.
    14. Shloof, A.M. & Senu, N. & Ahmadian, A. & Salahshour, Soheil, 2021. "An efficient operation matrix method for solving fractal–fractional differential equations with generalized Caputo-type fractional–fractal derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 415-435.
    15. Zhao, Zhihui & Li, Hong & Wang, Jing, 2021. "The study of a continuous Galerkin method for Sobolev equation with space-time variable coefficients," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    16. Trikha, Pushali & Mahmoud, Emad E. & Jahanzaib, Lone Seth & Matoog, R.T. & Abdel-Aty, Mahmoud, 2021. "Fractional order biological snap oscillator: Analysis and control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    17. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    18. Sina Etemad & Albert Shikongo & Kolade M. Owolabi & Brahim Tellab & İbrahim Avcı & Shahram Rezapour & Ravi P. Agarwal, 2022. "A New Fractal-Fractional Version of Giving up Smoking Model: Application of Lagrangian Piece-Wise Interpolation along with Asymptotical Stability," Mathematics, MDPI, vol. 10(22), pages 1-31, November.
    19. Li, Meng & Wei, Yifan & Niu, Binqian & Zhao, Yong-Liang, 2022. "Fast L2-1σ Galerkin FEMs for generalized nonlinear coupled Schrödinger equations with Caputo derivatives," Applied Mathematics and Computation, Elsevier, vol. 416(C).
    20. Li, Zhongfei & Liu, Zhuang & Khan, Muhammad Altaf, 2020. "Fractional investigation of bank data with fractal-fractional Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:181:y:2021:i:c:p:117-137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.