IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v81y2011i2p277-282.html
   My bibliography  Save this article

Estimating the inter-arrival time density of Markov renewal processes under structural assumptions on the transition distribution

Author

Listed:
  • Greenwood, Priscilla E.
  • Schick, Anton
  • Wefelmeyer, Wolfgang

Abstract

We consider a stationary Markov renewal process whose inter-arrival time density depends multiplicatively on the distance between the past and present state of the embedded chain. This is appropriate when the jump size is governed by influences that accumulate over time. Then we can construct an estimator for the inter-arrival time density that has the parametric rate of convergence. The estimator is a local von Mises statistic. The result carries over to the corresponding semi-Markov process.

Suggested Citation

  • Greenwood, Priscilla E. & Schick, Anton & Wefelmeyer, Wolfgang, 2011. "Estimating the inter-arrival time density of Markov renewal processes under structural assumptions on the transition distribution," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 277-282, February.
  • Handle: RePEc:eee:stapro:v:81:y:2011:i:2:p:277-282
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00293-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raberto, Marco & Scalas, Enrico & Mainardi, Francesco, 2002. "Waiting-times and returns in high-frequency financial data: an empirical study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 749-755.
    2. Paul Doukhan & Patrice Bertail & Philippe Soulier, 2006. "Dependence in Probability and Statistics," Post-Print hal-00268232, HAL.
    3. Meerschaert, Mark M. & Scalas, Enrico, 2006. "Coupled continuous time random walks in finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 114-118.
    4. Zudi Lu, 2001. "Asymptotic Normality of Kernel Density Estimators under Dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(3), pages 447-468, September.
    5. Schick Anton & Wefelmeyer Wolfgang, 2009. "Non-standard behavior of density estimators for sums of squared observations," Statistics & Risk Modeling, De Gruyter, vol. 27(1), pages 55-73, November.
    6. Glen, Andrew G. & Leemis, Lawrence M. & Drew, John H., 2004. "Computing the distribution of the product of two continuous random variables," Computational Statistics & Data Analysis, Elsevier, vol. 44(3), pages 451-464, January.
    7. Jessica Murray & Paul Segall, 2002. "Testing time-predictable earthquake recurrence by direct measurement of strain accumulation and release," Nature, Nature, vol. 419(6904), pages 287-291, September.
    8. Paul Doukhan & Patrice Bertail & Philippe Soulier, 2006. "Dependence in Probability and Statistics," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00268232, HAL.
    9. Anton Schick & Wolfgang Wefelmeyer, 2008. "Root-n consistency in weighted L 1 -spaces for density estimators of invertible linear processes," Statistical Inference for Stochastic Processes, Springer, vol. 11(3), pages 281-310, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bertail, Patrice & Clemencon, Stephan, 2008. "Approximate regenerative-block bootstrap for Markov chains," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2739-2756, January.
    2. Lahiri, S.N. & Robinson, Peter M., 2016. "Central limit theorems for long range dependent spatial linear processes," LSE Research Online Documents on Economics 65331, London School of Economics and Political Science, LSE Library.
    3. Paul Doukhan & Jean-David Fermanian & Gabriel Lang, 2009. "An empirical central limit theorem with applications to copulas under weak dependence," Statistical Inference for Stochastic Processes, Springer, vol. 12(1), pages 65-87, February.
    4. Cen, Zhongdi & Le, Anbo & Xu, Aimin, 2017. "A robust numerical method for a fractional differential equation," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 445-452.
    5. Scalas, Enrico, 2007. "Mixtures of compound Poisson processes as models of tick-by-tick financial data," Chaos, Solitons & Fractals, Elsevier, vol. 34(1), pages 33-40.
    6. Brunella Bonaccorso & Giuseppe T. Aronica, 2016. "Estimating Temporal Changes in Extreme Rainfall in Sicily Region (Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5651-5670, December.
    7. Thomas Chuffart, 2015. "Selection Criteria in Regime Switching Conditional Volatility Models," Econometrics, MDPI, vol. 3(2), pages 1-28, May.
    8. Anh, V.V. & Leonenko, N.N. & Sakhno, L.M., 2007. "Statistical inference using higher-order information," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 706-742, April.
    9. Tarasov, Vasily E., 2020. "Fractional econophysics: Market price dynamics with memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    10. Erhardt, Robert J. & Smith, Richard L., 2012. "Approximate Bayesian computing for spatial extremes," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1468-1481.
    11. Vasily E. Tarasov & Valentina V. Tarasova, 2019. "Dynamic Keynesian Model of Economic Growth with Memory and Lag," Mathematics, MDPI, vol. 7(2), pages 1-17, February.
    12. Gürtler, Marc & Kreiss, Jens-Peter & Rauh, Ronald, 2009. "A non-stationary approach for financial returns with nonparametric heteroscedasticity," Working Papers IF31V2, Technische Universität Braunschweig, Institute of Finance.
    13. Shulin Zhang & Qian M. Zhou & Huazhen Lin, 2021. "Goodness-of-fit test of copula functions for semi-parametric univariate time series models," Statistical Papers, Springer, vol. 62(4), pages 1697-1721, August.
    14. Stoyan V. Stoyanov & Svetlozar T. Rachev & Stefan Mittnik & Frank J. Fabozzi, 2019. "Pricing Derivatives In Hermite Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-27, September.
    15. Lee, Xing Ju & Hainy, Markus & McKeone, James P. & Drovandi, Christopher C. & Pettitt, Anthony N., 2018. "ABC model selection for spatial extremes models applied to South Australian maximum temperature data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 128-144.
    16. Inass Soukarieh & Salim Bouzebda, 2022. "Exchangeably Weighted Bootstraps of General Markov U -Process," Mathematics, MDPI, vol. 10(20), pages 1-42, October.
    17. Francq, Christian & Zakoïan, Jean-Michel, 2010. "Inconsistency of the MLE and inference based on weighted LS for LARCH models," Journal of Econometrics, Elsevier, vol. 159(1), pages 151-165, November.
    18. Hsieh, Meng-Chen & Hurvich, Clifford M. & Soulier, Philippe, 2007. "Asymptotics for duration-driven long range dependent processes," Journal of Econometrics, Elsevier, vol. 141(2), pages 913-949, December.
    19. Nikolai Leonenko & Andriy Olenko, 2013. "Tauberian and Abelian Theorems for Long-range Dependent Random Fields," Methodology and Computing in Applied Probability, Springer, vol. 15(4), pages 715-742, December.
    20. Beran, Jan & Ghosh, Sucharita & Schell, Dieter, 2009. "On least squares estimation for long-memory lattice processes," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2178-2194, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:2:p:277-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.