IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v315y2017icp47-53.html
   My bibliography  Save this article

Environment promotes the evolution of cooperation in spatial voluntary prisoner's dilemma game

Author

Listed:
  • Guo, Hao
  • Shen, Chen
  • Dai, Dameng
  • Zhang, Mi
  • Chu, Chen
  • Shi, Lei

Abstract

In reality fitness can be affected by the environment. We explore the evolution of cooperation with the influence of environment on prisoners’ dilemma game with voluntary participation. An individual's fitness is redefined to involve one's own payoff and the average performance of neighbors via preference level u. When u equals zero, the game falls back to its traditional form in which the fitness of an individual simply reflects one's own benefit. When u is larger than 0, the environment plays a role. Numerical simulations show that, for small b, increasing u enables the frequency of cooperation to increase monotonously and even dominate the whole population. For large b, although cooperators are exploited by defectors, the existence of loners protects them from getting wiped out. Finally three strategies start to exhibit cyclic dominance.

Suggested Citation

  • Guo, Hao & Shen, Chen & Dai, Dameng & Zhang, Mi & Chu, Chen & Shi, Lei, 2017. "Environment promotes the evolution of cooperation in spatial voluntary prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 47-53.
  • Handle: RePEc:eee:apmaco:v:315:y:2017:i:c:p:47-53
    DOI: 10.1016/j.amc.2017.07.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317305052
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.07.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Lei & Lin, Pei-jie & Chen, Ya-shan, 2014. "Voluntary strategy suppresses the positive impact of preferential selection in prisoner’s dilemma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 233-239.
    2. Jin, Jiahua & Shen, Chen & Chu, Chen & Shi, Lei, 2017. "Incorporating dominant environment into individual fitness promotes cooperation in the spatial prisoners' dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 70-75.
    3. James Andreoni & William Harbaugh & Lise Vesterlund, 2003. "The Carrot or the Stick: Rewards, Punishments, and Cooperation," American Economic Review, American Economic Association, vol. 93(3), pages 893-902, June.
    4. Martin A. Nowak & Karl Sigmund, 1998. "Evolution of indirect reciprocity by image scoring," Nature, Nature, vol. 393(6685), pages 573-577, June.
    5. M.A. Nowak & K. Sigmund, 1998. "Evolution of Indirect Reciprocity by Image Scoring/ The Dynamics of Indirect Reciprocity," Working Papers ir98040, International Institute for Applied Systems Analysis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zi-Ren & Deng, Zheng-Hong & Wang, Huan-Bo & Qu, Yun, 2021. "Moderate irrational sentiment-driven fitness can promote cooperation in the prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    2. Deng, Zhilong & Deming, Mao & Dameng, Dai, 2018. "Asymmetric learning ability promotes cooperation in structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 88-91.
    3. Han, Ying & Song, Zhao & Sun, Jialong & Ma, Jiezhong & Guo, Yangming & Zhu, Peican, 2020. "Investing the effect of age and cooperation in spatial multigame," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    4. He, Nanrong & Chen, Xiaojie & Szolnoki, Attila, 2019. "Central governance based on monitoring and reporting solves the collective-risk social dilemma," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 334-341.
    5. Liu, Yandi & Zheng, Tainian & Li, Yonghui & Dai, Yu, 2020. "Does the conformity save us when information advantage fails?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    6. Wang, Jianwei & Yu, Fengyuan & Zhao, Jingyi & Li, Fanfeng & He, Jialu, 2021. "How costly altruism survives? The rescue of both cooperation and voluntary sharing," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    7. Liu, Jinzhuo & Meng, Haoran & Wang, Wei & Li, Tong & Yu, Yong, 2018. "Synergy punishment promotes cooperation in spatial public good game," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 214-218.
    8. Gao, Yan & Li, Minlan & Hu, Yuanyuan & Wang, Rui-Wu & Wang, Chao, 2024. "Evolutionary dynamics in voluntary prisoner’s dilemma game with environmental feedbacks," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    9. Wang, Zhen & Zhang, Geng-shun & Ding, Hong & Cui, Guang-Hai & Yao, Ye, 2019. "Strategy imitation behavior driven influence adjustment promotes cooperation in spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    10. Deng, Zheng-Hong & Huang, Yi-Jie & Gu, Zhi-Yang & Liu, Dan & Gao, Li, 2018. "Multigames with voluntary participation on interdependent networks and the evolution of cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 151-157.
    11. Jinzhuo Liu & Mao Peng & Yunchen Peng & Yong Li & Chen Chu & Xiaoyu Li & Qing Liu, 2021. "Effects of inequality on a spatial evolutionary public goods game," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(8), pages 1-7, August.
    12. Xu, Jiwei & Deng, Zhenghong & Gao, Bo & Song, Qun & Tian, Zhihong & Wang, Qiuling & Gao, Mingyu & Niu, Zhenxi, 2019. "Popularity-driven strategy updating rule promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 82-87.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Yan & Li, Minlan & Hu, Yuanyuan & Wang, Rui-Wu & Wang, Chao, 2024. "Evolutionary dynamics in voluntary prisoner’s dilemma game with environmental feedbacks," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. Feng, Sinan & Liu, Xuesong & Dong, Yida, 2022. "Limited punishment pool may promote cooperation in the public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    3. Isamu Okada, 2020. "A Review of Theoretical Studies on Indirect Reciprocity," Games, MDPI, vol. 11(3), pages 1-17, July.
    4. Geng, Yini & Shen, Chen & Guo, Hao & Chu, Chen & Yu, Dalei & Shi, Lei, 2017. "Historical payoff promotes cooperation in voluntary prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 145-149.
    5. Wang, Lu & Ye, Shun-Qiang & Cheong, Kang Hao & Bao, Wei & Xie, Neng-gang, 2018. "The role of emotions in spatial prisoner’s dilemma game with voluntary participation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1396-1407.
    6. Shen, Chen & Lu, Jun & Shi, Lei, 2016. "Does coevolution setup promote cooperation in spatial prisoner's dilemma game?," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 201-207.
    7. Shade T. Shutters, 2009. "Strong reciprocity, social structure, and the evolution of fair allocations in a simulated ultimatum game," Computational and Mathematical Organization Theory, Springer, vol. 15(2), pages 64-77, June.
    8. Chen, Ya-Shan & Yang, Han-Xin & Guo, Wen-Zhong, 2017. "Aspiration-induced dormancy promotes cooperation in the spatial Prisoner’s Dilemma games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 625-630.
    9. Carattini, Stefano & Gillingham, Kenneth & Meng, Xiangyu & Yoeli, Erez, 2024. "Peer-to-peer solar and social rewards: Evidence from a field experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 219(C), pages 340-370.
    10. Wang, Xiaofeng & Chen, Xiaojie & Gao, Jia & Wang, Long, 2013. "Reputation-based mutual selection rule promotes cooperation in spatial threshold public goods games," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 181-187.
    11. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    12. Frauke von Bieberstein & Andrea Essl & Kathrin Friedrich, 2021. "Empathy: A clue for prosocialty and driver of indirect reciprocity," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-15, August.
    13. Charness, Gary & Du, Ninghua & Yang, Chun-Lei, 2011. "Trust and trustworthiness reputations in an investment game," Games and Economic Behavior, Elsevier, vol. 72(2), pages 361-375, June.
    14. Cubitt, Robin P. & Drouvelis, Michalis & Gächter, Simon & Kabalin, Ruslan, 2011. "Moral judgments in social dilemmas: How bad is free riding?," Journal of Public Economics, Elsevier, vol. 95(3), pages 253-264.
    15. Deng, Zhenghong & Wang, Shengnan & Gu, Zhiyang & Xu, Juwei & Song, Qun, 2017. "Heterogeneous preference selection promotes cooperation in spatial prisoners’ dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 100(C), pages 20-23.
    16. Gaudeul, Alexia & Keser, Claudia & Müller, Stephan, 2021. "The evolution of morals under indirect reciprocity," Games and Economic Behavior, Elsevier, vol. 126(C), pages 251-277.
    17. Ben-Ner, Avner & Putterman, Louis & Kong, Fanmin & Magan, Dan, 2004. "Reciprocity in a two-part dictator game," Journal of Economic Behavior & Organization, Elsevier, vol. 53(3), pages 333-352, March.
    18. Engelmann, Dirk & Fischbacher, Urs, 2009. "Indirect reciprocity and strategic reputation building in an experimental helping game," Games and Economic Behavior, Elsevier, vol. 67(2), pages 399-407, November.
    19. Andrew W. Bausch, 2014. "Evolving intergroup cooperation," Computational and Mathematical Organization Theory, Springer, vol. 20(4), pages 369-393, December.
    20. Suzuki, Shinsuke & Akiyama, Eizo, 2008. "Evolutionary stability of first-order-information indirect reciprocity in sizable groups," Theoretical Population Biology, Elsevier, vol. 73(3), pages 426-436.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:315:y:2017:i:c:p:47-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.